Operator Algebras and Self-Similar Actions

算子代数和自相似动作

基本信息

  • 批准号:
    RGPIN-2018-04003
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Operator algebras are algebras generated by a family of continuous linear transformations on Hilbert spaces. They are originally from quantum physics. They are now closely related to other areas, such as quantum computing, quantum information, signal processing, representation theory and differential geometry. They are playing increasingly important roles in modern mathematics. Intuitively speaking, an object is called self-similar if its parts are similar to the whole. So self-similarities are naturally related to symmetries appearing in fractal geometry and dynamics. Usually, they are encoded by semigroups/inverse semigroups/groupoids induced from self-similarities, which are isomorphisms between the parts of given self-similar objects on different scales. Self-similar actions have been attracting a great deal of attention in the fields of geometric group theory and operator algebras. My proposal mainly focuses on the interplay between operator algebras and self-similar actions. This has deep connections with a lot of hot and interesting topics, such as higher-rank graph algebras, self-similar actions, and the Yang-Baxter equation. To be more precise, given a higher-rank graph and a group, suppose that the group acts on the higher-rank graph self-similarly. To this self-similar action, one then can associate some important operator algebras, such as the Toeplitz type C*-algebra and the Cuntz-Pimsner-type C*-algebra. In particular, the Cuntz-Pimsner type C*-algebra, by definition, is the universal C*-algebra with the following properties: There are a Cuntz-Krieger representation of the higher-rank graph and a unitary representation of the group, such that these two representations are naturally compatible with respect to the given self-similar higher-rank graph action. Even in the case of rank-1 graph actions, those C*-algebras include many well-known and important classes, such as Katsura algebras (which exhaust all Kirchberg algebras) and Nekrashevych C*-algebras (which are first operator algebras essentially induced from self-similar actions). It is also a fact that higher-rank graph algebras are much more complicated than rank-1 graph algebras. Therefore, it would be no surprise at all that those operator algebras coming from self-similar higher-rank graph actions embrace more interesting, important classes of operator algebras, and are also much more sophisticated than those from self-similar graph actions. On one hand, the case of rank-1 graph self-similar actions will give us some intuitions and motivations to our development of the higher-rank case. On the other hand, what we will gain from working on the higher-rank case will also give us a better understanding of the rank-1 case. My proposal is an initiative to the study of self-similar higher-rank graph actions, and will open a lot of interesting and important topics which are worth studying in the future.
算子代数是由希尔伯特空间上的一系列连续线性变换生成的代数。它们最初来自量子物理学。它们现在与其他领域密切相关,如量子计算、量子信息、信号处理、表示理论和微分几何。它们在现代数学中发挥着越来越重要的作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yang, Dilian其他文献

Nuclearity of semigroup C*-algebras
  • DOI:
    10.1016/j.jfa.2020.108793
  • 发表时间:
    2021-01-15
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Huef, Astrid An;Nucinkis, Brita;Yang, Dilian
  • 通讯作者:
    Yang, Dilian
Representing topological full groups in Steinberg algebras and C*-algebras
表示 Steinberg 代数和 C* 代数中的拓扑满群

Yang, Dilian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yang, Dilian', 18)}}的其他基金

Operator Algebras and Self-Similar Actions
算子代数和自相似动作
  • 批准号:
    RGPIN-2018-04003
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras and Self-Similar Actions
算子代数和自相似动作
  • 批准号:
    RGPIN-2018-04003
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras and Self-Similar Actions
算子代数和自相似动作
  • 批准号:
    RGPIN-2018-04003
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras and Self-Similar Actions
算子代数和自相似动作
  • 批准号:
    RGPIN-2018-04003
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
  • 批准号:
    358793-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
  • 批准号:
    358793-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
  • 批准号:
    358793-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
  • 批准号:
    358793-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Nonself-adjoint operator algebras and functional equations
非自共轭算子代数和函数方程
  • 批准号:
    358793-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Nonself-adjoint operator algebras and functional equations
非自共轭算子代数和函数方程
  • 批准号:
    358793-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Operator Algebras and Self-Similar Actions
算子代数和自相似动作
  • 批准号:
    RGPIN-2018-04003
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras and Self-Similar Actions
算子代数和自相似动作
  • 批准号:
    RGPIN-2018-04003
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras and Self-Similar Actions
算子代数和自相似动作
  • 批准号:
    RGPIN-2018-04003
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras and Self-Similar Actions
算子代数和自相似动作
  • 批准号:
    RGPIN-2018-04003
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
States and structure of operator algebras from self-similar actions
自相似作用算子代数的状态和结构
  • 批准号:
    DP130100490
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Projects
Non self-adjoint operator algebras
非自伴算子代数
  • 批准号:
    3488-1998
  • 财政年份:
    2002
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Non self-adjoint operator algebras
非自伴算子代数
  • 批准号:
    3488-1998
  • 财政年份:
    2001
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Non self-adjoint operator algebras
非自伴算子代数
  • 批准号:
    3488-1998
  • 财政年份:
    2000
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Non self-adjoint operator algebras
非自伴算子代数
  • 批准号:
    3488-1998
  • 财政年份:
    1999
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Sciences: Structural Properties of Non Self Adjoint Operator Algebras
数学科学:非自伴随算子代数的结构性质
  • 批准号:
    9204811
  • 财政年份:
    1992
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了