Characterizing algebraic groups via maximal tori

通过最大环面表征代数群

基本信息

  • 批准号:
    RGPIN-2017-05749
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Understanding symmetry, and how and why it arises in nature, is important in both Mathematics and Physics. Recall that the mathematical objects that measure symmetry are called ``groups'' and their study is known as ``group theory''. Classical examples of groups are those of rotations or translations (continuous groups) and the symmetry of a square or a snowflake (discrete groups). The mid 20th century saw the birth of Algebraic Groups, objects that capture the spirit of continuous groups (the so-called Lie groups) and discrete groups, but that are much more universal. Over the course of subsequent decades the theory of algebraic groups has been used to give a unified treatment of several key areas of algebra and number theory, including the theories of quadratic forms, central simple algebras, algebras with involution and some non-associative algebras. The research program centers on understanding the very nature of algebraic groups themselves, and their applications to several areas of Mathematics. The main goal of the project is to achieve important results in characterizing algebraic groups via their maximal tori and ramification locus. Recall that any algebraic group can be thought of as a ``union of its simple subobjects", called maximal tori. A natural question appears immediately: What can one say about two algebraic groups given that they have the same maximal tori? In other words, using analogy with ``children puzzles", we can rephrase it as follows: if we destroy all connections and relations between maximal tori in a given group G and take their disjoint union, one can ask how to glue these tori together in order to reconstruct G itself. Also, one can ask in how many ways we can glue a family of given tori in order to construct a new group. The problem of characterizing absolutely almost simple algebraic groups having the same maximal tori is rooted in the classical results on the maximal subfields and the splitting fields of division algebras and it has recently received a good deal of attention in algebra and geometry. This was due in part to newly discovered connections with geometric problems involving isospectral and length-commensurable Riemannian manifolds and locally symmetric spaces, but in fact questions of this kind are relevant also for other areas. We intend to attack this problem by the studying the ramification behavior of algebraic groups. We expect that for a given group G defined over a finitely generated field there are only finitely many groups which have the same ramification properties as G . To obtain this result we are going to study different forms of local-global principles for torsors. Recall that torsors are tools that help us to construct groups out of some local data. Any success in understanding local-global behavior of torsors would lead us to solutions of many open long-standing conjectures in the theory of algebraic groups and geometry.
理解对称性,以及它是如何和为什么在自然界中产生的,对数学和物理学都很重要。回想一下,测量对称性的数学对象被称为“群”,它们的研究被称为“群论”。群的经典例子是旋转或平移的群(连续群)和正方形或雪花的对称(离散群)。20世纪中期见证了代数群(Algebraic Groups)的诞生,这些对象捕捉了连续群(所谓的李群)和离散群的精神,但它们更加普遍。在随后的几十年里,代数群理论被用于对代数和数论的几个关键领域进行统一的处理,包括二次型理论、中心简单代数、对合代数和一些非结合代数。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chernousov, Vladimir其他文献

The Impact of Metal-Based Nanoparticles Produced by Different Types of Underwater Welding on Marine Microalgae.
  • DOI:
    10.3390/toxics11020105
  • 发表时间:
    2023-01-22
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Pikula, Konstantin;Kirichenko, Konstantin;Chernousov, Vladimir;Parshin, Sergey;Masyutin, Alexander;Parshina, Yulia;Pogodaev, Anton;Gridasov, Alexander;Tsatsakis, Aristidis;Golokhvast, Kirill
  • 通讯作者:
    Golokhvast, Kirill

Chernousov, Vladimir的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chernousov, Vladimir', 18)}}的其他基金

Characterizing algebraic groups via maximal tori
通过最大环面表征代数群
  • 批准号:
    RGPIN-2017-05749
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Characterizing algebraic groups via maximal tori
通过最大环面表征代数群
  • 批准号:
    RGPIN-2017-05749
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Characterizing algebraic groups via maximal tori
通过最大环面表征代数群
  • 批准号:
    RGPIN-2017-05749
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Algebra
代数
  • 批准号:
    1000219864-2010
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Canada Research Chairs
Characterizing algebraic groups via maximal tori
通过最大环面表征代数群
  • 批准号:
    RGPIN-2017-05749
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Algebra
代数
  • 批准号:
    1000219864-2010
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Canada Research Chairs
Applications of torsors in algebra and Lie theory
扭转量在代数和李理论中的应用
  • 批准号:
    298447-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of torsors in algebra and Lie theory
扭转量在代数和李理论中的应用
  • 批准号:
    298447-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Algebra
代数
  • 批准号:
    1219864-2010
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Canada Research Chairs
Applications of torsors in algebra and Lie theory
扭转量在代数和李理论中的应用
  • 批准号:
    298447-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Lienard系统的不变代数曲线、可积性与极限环问题研究
  • 批准号:
    12301200
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
对RS和AG码新型软判决代数译码的研究
  • 批准号:
    61671486
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Research on trace formulas for covering groups of reductive algebraic groups
还原代数群覆盖群的迹公式研究
  • 批准号:
    23K12951
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Algebraic groups and Lie algebras
代数群和李代数
  • 批准号:
    2883177
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Studentship
Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
  • 批准号:
    2305231
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
  • 批准号:
    22K13904
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
MPS-Ascend: The C*-Algebraic Mackey Bijection for Real Reductive Groups
MPS-Ascend:实数约简群的 C*-代数 Mackey 双射
  • 批准号:
    2213097
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Fellowship Award
Combinatorial Algebraic Geometry for Spectral Theory and Galois Groups
谱论和伽罗瓦群的组合代数几何
  • 批准号:
    2201005
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
  • 批准号:
    RGPIN-2016-05397
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric combinatorics of Coxeter groups
Coxeter 群的代数和几何组合
  • 批准号:
    RGPIN-2018-04615
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Canonical dimension and actions of finite groups on algebraic varieties
代数簇上有限群的规范维数和作用
  • 批准号:
    498240045
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Heisenberg Grants
Arithmetic Questions in the Theory of Linear Algebraic Groups
线性代数群理论中的算术问题
  • 批准号:
    2154408
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了