New Calabi-Yau Geometries in String Theory and Supersymmetry
弦理论和超对称中的新卡拉比-丘几何
基本信息
- 批准号:RGPIN-2017-06971
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since the first superstring revolution, string theory has seen a free flow of ideas from physics to mathematics and back again. Its future depends on expanding this interface, bringing together ideas as well as people. My work sets up a key framework for new and emerging physics, taking highly structured physical systems and using the language of geometry to constrain, classify, and evolve physical theories. Research at the interface of theoretical particle physics and mathematics generally falls into two categories, one whose focus is on specific physical questions, including string phenomenology and supersymmetry applications to collider physics. The second category involves mathematicians strongly inspired by theoretical particle physics, its structures and methods, and especially string theory and supersymmetric field theory. My research brings these groups together by studying string dualities and supersymmetry, and the critical role played by Calabi-Yau geometry.
A number of important string dualities are formulated in terms of fibration structures on Calabi-Yau geometries. Over the past six years, my research program has built a dictionary between period integrals and algebraic submanifolds of fibered Calabi-Yau manifolds. By proving effective forms of the famous Hodge Conjecture for the fibers, I provide an entirely new approach to understanding both fibered Calabi-Yau manifolds and their moduli spaces "from the inside out."
My research cuts across a large swath of the physics of string theory, including: the "non-geometric" Heterotic compactifications stemming from the Clingher-Doran-Malmendier-Morrison program in Heterotic/F-theory duality; unification of Calabi-Yau manifolds and Landau-Ginzburg models obtained by mirroring Calabi-Yau fibrations and Tyurin degenerations; the classification of orientifold theories on elliptic curves and elliptic fibered Calabi-Yau manifolds via new variants of topological KR-theory describing their BPS spectra; and the characterization of the modularity properties of the generating functions of vertical D4-D2-D0 bound states on smooth K3 surface fibered Calabi-Yau threefolds.
I have recently uncovered a link between the physics of supersymmetry and Calabi-Yau geometry. The dimensional reduction of supermultiplets to the world-line, which strips away their spatial dimensions, is encoded by a colored bipartite graph known as an Adinkra. My work shows that there is a super Riemann surface naturally associated with each Adinkra such that the Adinkra graph is embedded into the surface as a dimer model. This “geometrization” of supersymmetric representation theory provides a fundamental connection between supermultiplets and mirror symmetry, a line of research in theoretical physics which led to my appointment as the first ever Visiting Campobassi Professor of Physics at the University of Maryland.
自从第一次超弦革命以来,弦理论已经看到了从物理到数学再回来的思想自由流动。 它的未来取决于扩大这种界面,将想法和人聚集在一起。 我的工作为新兴物理学建立了一个关键框架,采用高度结构化的物理系统,并使用几何语言来约束,分类和发展物理理论。 理论粒子物理学和数学的研究通常福尔斯两类,一类侧重于特定的物理问题,包括弦现象学和超对称性在对撞机物理学中的应用。 第二类是数学家,他们深受理论粒子物理学及其结构和方法的启发,特别是弦理论和超对称场论。 我的研究通过研究弦的对偶性和超对称性,以及卡-丘几何所起的关键作用,将这些群体聚集在一起。
一些重要的弦对偶制定的纤维化结构的卡-丘几何。 在过去的六年里,我的研究计划已经建立了一个字典之间的周期积分和代数子流形的纤维卡-丘流形。 通过证明著名的霍奇猜想的有效形式的纤维,我提供了一个全新的方法来理解纤维卡-丘流形和他们的模空间“从内到外。"
我的研究跨越了弦理论物理学的很大一部分,包括:“非几何”杂化紧化,源于杂化/F理论对偶中的Clingher-Doran-Malmendier-Morrison程序;通过镜像Calabi-Yau纤维化和Tyurin退化获得的Calabi-Yau流形和Landau-Ginzburg模型的统一;通过描述其BPS谱的拓扑KR-理论的新变体,对椭圆曲线和椭圆纤维Calabi-Yau流形上的定向折叠理论进行分类;以及光滑K3表面纤维化Calabi-Yau三重态上垂直D_4-D_2-D_0束缚态生成函数的模性特征。
我最近发现了超对称物理学和卡-丘几何学之间的联系。将超多重态降维到世界线,去掉它们的空间维度,由一个称为Adinkra的有色二分图编码。我的工作表明,有一个超级黎曼曲面自然与每个Adinkra,这样的Adinkra图嵌入到表面作为二聚体模型。超对称表象理论的这种“几何化”提供了超多重态和镜像对称之间的基本联系,这是理论物理学的一条研究路线,使我被任命为马里兰州大学有史以来第一位访问坎波切尼物理学教授。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Doran, Charles其他文献
Doran, Charles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Doran, Charles', 18)}}的其他基金
Critical Transitions for Inclusive Mathematics Enrichment (CTIME)
包容性数学丰富的关键转变 (CTIME)
- 批准号:
567311-2021 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
PromoScience
New Calabi-Yau Geometries in String Theory and Supersymmetry
弦理论和超对称中的新卡拉比-丘几何
- 批准号:
RGPIN-2017-06971 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
New Calabi-Yau Geometries in String Theory and Supersymmetry
弦理论和超对称中的新卡拉比-丘几何
- 批准号:
RGPIN-2017-06971 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
New Calabi-Yau Geometries in String Theory and Supersymmetry
弦理论和超对称中的新卡拉比-丘几何
- 批准号:
RGPIN-2017-06971 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
New Calabi-Yau Geometries in String Theory and Supersymmetry
弦理论和超对称中的新卡拉比-丘几何
- 批准号:
RGPIN-2017-06971 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Calabi-Yau geometry and mirror transforms of the Hodge conjecture
霍奇猜想的卡拉比-丘几何和镜像变换
- 批准号:
386498-2010 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Calabi-Yau geometry and mirror transforms of the Hodge conjecture
霍奇猜想的卡拉比-丘几何和镜像变换
- 批准号:
386498-2010 - 财政年份:2014
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Calabi-Yau geometry and mirror transforms of the Hodge conjecture
霍奇猜想的卡拉比-丘几何和镜像变换
- 批准号:
386498-2010 - 财政年份:2013
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Calabi-Yau geometry and mirror transforms of the Hodge conjecture
霍奇猜想的卡拉比-丘几何和镜像变换
- 批准号:
386498-2010 - 财政年份:2012
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Calabi-Yau geometry and mirror transforms of the Hodge conjecture
霍奇猜想的卡拉比-丘几何和镜像变换
- 批准号:
386498-2010 - 财政年份:2011
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
分次斜 Calabi-Yau 代数的研究
- 批准号:Y24A010046
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
关于退化Calabi-Yau流形的研究
- 批准号:12301059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Calabi-Yau代数的同调和表示与Poisson代数的同调
- 批准号:11901396
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
模型结构、三角范畴与Calabi-Yau代数
- 批准号:11871125
- 批准年份:2018
- 资助金额:52.0 万元
- 项目类别:面上项目
镜对称及双有理代数几何背景下的高维 Calabi-Yau 簇
- 批准号:11601015
- 批准年份:2016
- 资助金额:15.0 万元
- 项目类别:青年科学基金项目
箭图代数与Calabi-Yau范畴
- 批准号:11671230
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
Calabi-Yau范畴上的非交换几何结构
- 批准号:11671281
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
分次Calabi-Yau代数的有限群作用及其不变子代数
- 批准号:11571239
- 批准年份:2015
- 资助金额:50.0 万元
- 项目类别:面上项目
Pointed Hopf代数Calabi-Yau性质的研究
- 批准号:11301126
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Calabi-Yau 三流形中的孤立有理曲线研究
- 批准号:11301496
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Studies of five-dimensional supersymmetric gauge theories from web diagrams which characterize Calabi-Yau spaces
从表征 Calabi-Yau 空间的网络图研究五维超对称规范理论
- 批准号:
23K03396 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cohomological Hall Algebras of Calabi-Yau 3-folds
Calabi-Yau 3 次上同调霍尔代数
- 批准号:
EP/X040674/1 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Research Grant
Degenerations of Fano and Calabi-Yau varieties and its applications
Fano和Calabi-Yau品种的退化及其应用
- 批准号:
23K03032 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of algebraic varieties related to Calabi-Yau varieties in positive characteristic
与Calabi-Yau簇相关的正特征代数簇研究
- 批准号:
23K03066 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generalized Calabi-Yau Geometry
广义卡拉比-丘几何
- 批准号:
559503-2021 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Postgraduate Scholarships - Doctoral
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Dynamics on Calabi--Yau and abelian varieties
卡拉比动态--丘和阿贝尔变种
- 批准号:
EP/W026554/1 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Research Grant
Calabi-Yau Mirror Symmetry
卡拉比丘镜像对称
- 批准号:
574294-2022 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
University Undergraduate Student Research Awards
Representation Theory, Calabi-Yau Manifolds, and Mirror Symmetry
表示论、卡拉比-丘流形和镜像对称
- 批准号:
2227199 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual