Towards an immuno-epidemiological framework: The trade-off between biological detail and mathematical complexity

迈向免疫流行病学框架:生物学细节和数学复杂性之间的权衡

基本信息

  • 批准号:
    RGPIN-2018-05862
  • 负责人:
  • 金额:
    $ 2.55万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The field of infectious disease modelling ultimately stems from two sub-fields. Mathematical epidemiology focuses on the spread of disease in a population of hosts with the aim of tracing factors that contribute to pathogen propagation. Mathematical immunology (in-host models), in contrast, investigates disease dynamics within an infected host, to uncover the underlying mechanisms (pathogen/immune system interactions) driving disease progression. Recently, the field of immuno-epidemiology (IE) has arisen. Here, in-host models are combined into population level models so that the inherent feedback loop of infectious disease, between individual and population levels of infection, can be studied. In disease modelling a tradeoff exists between the level of biological detail included in a model and the complexity of the mathematical model itself. The goal is to develop a model that sufficiently' represents the biological system in a mathematically tractable way. However, given the same biological system and simplifying assumptions, different models can be developed. Thus, model outcomes/results can differ. In mathematical epidemiology and mathematical immunology this means that key indicators and measurements of infection and disease that are important to public health and medicine will vary. Also, depending on the models studied, the results may even be contradictory. Certainly, in these cases, disease models are limited in producing new knowledge about the dynamics of different pathogens. In immuno-epidemiology, the differing results found at each scale of infection can also be magnified, and thus will not aid in the study of the feedback loop of infectious diseases (between individuals and populations). It is therefore imperative that we study the effects of simplifying assumptions on each scale of infection. In the proposed work, we will detail the effects of commonly used simplifying assumptions in mathematical immunology and mathematical epidemiology, and we will study their effects on key measurements of infection. Deterministic and stochastic models will be developed, compared, and contrasted. Simple immuno-epidemiological models will also be developed to study the effects of one or two simplifying assumptions at each level of infection on the feedback loop. We focus our work on infectious diseases that enable the study of the development and waning of immunity (immune system memory cells). Ultimately, our work will inform the field of infectious disease modelling, which, in turn, will inform public health decision makers, and benefit the health of Canadians.
传染病建模领域最终源于两个子领域。数学流行病学的重点是疾病在宿主群体中的传播,目的是追踪导致病原体传播的因素。相反,数学免疫学(宿主内模型)研究受感染宿主内的疾病动力学,以揭示驱动疾病进展的潜在机制(病原体/免疫系统相互作用)。最近,免疫流行病学(IE)领域已经兴起。在这里,在宿主模型结合到人口水平的模型,使传染病的内在反馈回路,个人和人口之间的感染水平,可以研究。 在疾病建模中,模型中包含的生物细节水平与数学模型本身的复杂性之间存在权衡。我们的目标是开发一个模型,以数学上易于处理的方式充分代表生物系统。然而,给定相同的生物系统和简化的假设,可以开发不同的模型。因此,模型结果/结果可能不同。在数学流行病学和数学免疫学中,这意味着对公共卫生和医学很重要的感染和疾病的关键指标和测量将有所不同。此外,根据所研究的模型,结果甚至可能是矛盾的。当然,在这些情况下,疾病模型在产生关于不同病原体动力学的新知识方面受到限制。在免疫流行病学中,在每个感染规模上发现的不同结果也可以被放大,因此不会有助于研究传染病的反馈回路(在个体和群体之间)。因此,我们必须研究简化假设对每个感染规模的影响。 在拟议的工作中,我们将详细介绍数学免疫学和数学流行病学中常用的简化假设的影响,我们将研究它们对感染的关键测量的影响。确定性和随机模型将开发,比较和对比。还将开发简单的免疫流行病学模型,以研究在每一感染水平上的一个或两个简化假设对反馈回路的影响。我们的工作重点是传染病,使免疫力(免疫系统记忆细胞)的发展和减弱的研究。 最终,我们的工作将为传染病建模领域提供信息,反过来,这将为公共卫生决策者提供信息,并使加拿大人的健康受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heffernan, Jane其他文献

The race to understand immunopathology in COVID-19: Perspectives on the impact of quantitative approaches to understand within-host interactions.
  • DOI:
    10.1016/j.immuno.2023.100021
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gazeau, Sonia;Deng, Xiaoyan;Ooi, Hsu Kiang;Mostefai, Fatima;Hussin, Julie;Heffernan, Jane;Jenner, Adrianne L;Craig, Morgan
  • 通讯作者:
    Craig, Morgan
Mathematical Modeling for Hepatitis B Virus: Would Spatial Effects Play a Role and How to Model It?
  • DOI:
    10.3389/fphys.2020.00146
  • 发表时间:
    2020-02-25
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Means, Shawn;Ali, Md A.;Heffernan, Jane
  • 通讯作者:
    Heffernan, Jane
COVID-19 in Ontario Long-term Care Facilities Project, a manually curated and validated database.
  • DOI:
    10.3389/fpubh.2023.1133419
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Kaur, Mahakprit;Bragazzi, Nicola Luigi;Heffernan, Jane;Tsasis, Peter;Wu, Jianhong;Kong, Jude Dzevela
  • 通讯作者:
    Kong, Jude Dzevela
Mitigating co-circulation of seasonal influenza and COVID-19 pandemic in the presence of vaccination: A mathematical modeling approach.
  • DOI:
    10.3389/fpubh.2022.1086849
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Majeed, Bushra;David, Jummy Funke;Bragazzi, Nicola Luigi;McCarthy, Zack;Grunnill, Martin David;Heffernan, Jane;Wu, Jianhong;Woldegerima, Woldegebriel Assefa
  • 通讯作者:
    Woldegerima, Woldegebriel Assefa
Modeling vaccination and control strategies for outbreaks of monkeypox at gatherings.
  • DOI:
    10.3389/fpubh.2022.1026489
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Yuan, Pei;Tan, Yi;Yang, Liu;Aruffo, Elena;Ogden, Nicholas H.;Belair, Jacques;Arino, Julien;Heffernan, Jane;Watmough, James;Carabin, Helene;Zhu, Huaiping
  • 通讯作者:
    Zhu, Huaiping

Heffernan, Jane的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heffernan, Jane', 18)}}的其他基金

Towards an immuno-epidemiological framework: The trade-off between biological detail and mathematical complexity
迈向免疫流行病学框架:生物学细节和数学复杂性之间的权衡
  • 批准号:
    RGPIN-2018-05862
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Towards an immuno-epidemiological framework: The trade-off between biological detail and mathematical complexity
迈向免疫流行病学框架:生物学细节和数学复杂性之间的权衡
  • 批准号:
    RGPIN-2018-05862
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Towards an immuno-epidemiological framework: The trade-off between biological detail and mathematical complexity
迈向免疫流行病学框架:生物学细节和数学复杂性之间的权衡
  • 批准号:
    RGPIN-2018-05862
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
New and enhanced models in disease modelling: The trade-off between biological detail and mathematical complexity
疾病建模中的新模型和增强模型:生物细节和数学复杂性之间的权衡
  • 批准号:
    522595-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Towards an immuno-epidemiological framework: The trade-off between biological detail and mathematical complexity
迈向免疫流行病学框架:生物学细节和数学复杂性之间的权衡
  • 批准号:
    RGPIN-2018-05862
  • 财政年份:
    2018
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
New and enhanced models in disease modelling: The trade-off between biological detail and mathematical complexity
疾病建模中的新模型和增强模型:生物细节和数学复杂性之间的权衡
  • 批准号:
    522595-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Analytical framework for identifying health benefits in web-application users
用于识别网络应用程序用户健康益处的分析框架
  • 批准号:
    513793-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Engage Plus Grants Program
A mathematical immuno-epidemiological framework for co-infection
共同感染的数学免疫流行病学框架
  • 批准号:
    342116-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
A mathematical immuno-epidemiological framework for co-infection
共同感染的数学免疫流行病学框架
  • 批准号:
    342116-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Analytical framework for identifying health benefits in web-application users
用于识别网络应用程序用户健康益处的分析框架
  • 批准号:
    500266-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Engage Grants Program

相似国自然基金

冷压力激活玉米串联重复序列的细胞遗传学研究
  • 批准号:
    31571265
  • 批准年份:
    2015
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
靶向促凋亡分子Immuno-caspase6的优化及对HER2阳性胃癌细胞杀伤作用的研究
  • 批准号:
    81301702
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
免疫促凋亡分子Immuno-Fdt-tBid的人源化及其对HER2阳性肿瘤杀伤作用的研究
  • 批准号:
    81172147
  • 批准年份:
    2011
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
  • 批准号:
    30600737
  • 批准年份:
    2006
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
检测环境水样中隐孢子虫卵囊的Immuno-PCR-ELISA研究
  • 批准号:
    30240072
  • 批准年份:
    2002
  • 资助金额:
    7.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Immuno-epidemiological Approach in Tackling Emerging & Re-emerging Infections in the Tropical Americas
应对新兴疾病的免疫流行病学方法
  • 批准号:
    22KK0279
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Towards an immuno-epidemiological framework: The trade-off between biological detail and mathematical complexity
迈向免疫流行病学框架:生物学细节和数学复杂性之间的权衡
  • 批准号:
    RGPIN-2018-05862
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Towards an immuno-epidemiological framework: The trade-off between biological detail and mathematical complexity
迈向免疫流行病学框架:生物学细节和数学复杂性之间的权衡
  • 批准号:
    RGPIN-2018-05862
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Towards an immuno-epidemiological framework: The trade-off between biological detail and mathematical complexity
迈向免疫流行病学框架:生物学细节和数学复杂性之间的权衡
  • 批准号:
    RGPIN-2018-05862
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Towards an immuno-epidemiological framework: The trade-off between biological detail and mathematical complexity
迈向免疫流行病学框架:生物学细节和数学复杂性之间的权衡
  • 批准号:
    RGPIN-2018-05862
  • 财政年份:
    2018
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
A mathematical immuno-epidemiological framework for co-infection
共同感染的数学免疫流行病学框架
  • 批准号:
    342116-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
A mathematical immuno-epidemiological framework for co-infection
共同感染的数学免疫流行病学框架
  • 批准号:
    342116-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
A mathematical immuno-epidemiological framework for co-infection
共同感染的数学免疫流行病学框架
  • 批准号:
    342116-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
A mathematical immuno-epidemiological framework for co-infection
共同感染的数学免疫流行病学框架
  • 批准号:
    342116-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Immuno-epidemiological insights into the development of immunity to malaria and drug resistance
关于疟疾免疫力和耐药性发展的免疫流行病学见解
  • 批准号:
    FT130101122
  • 财政年份:
    2013
  • 资助金额:
    $ 2.55万
  • 项目类别:
    ARC Future Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了