Advancing Neural Network Models of Language Processing

推进语言处理的神经网络模型

基本信息

  • 批准号:
    RGPIN-2017-06310
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Impact. Understanding language processing is critical to the well-being of every Canadian. The importance of this topic is exemplified by the $4.5 billion that provincial education ministries across Canada spend on special language-related programs, including language training for newcomers. It is also seen in the major industrial opportunities brain-inspired models have for artificial intelligence (AI), such as the $10 billion in revenue generated by Microsoft's natural language AI. An improved theory of the brain's language system will therefore enable a range of innovative approaches to language instruction, remediation, and AI. Plan. My research focuses on advancing our understanding of the neural basis of word processing by incrementally building and testing neural network models of language made up of groups of simulated neurons. The models that I develop improve upon classic, highly influential neural network models by incorporating additional principles from systems and cellular neuroscience. My long term objectives and associated short-term aims will break new ground by building upon my prior research on the following key aspects of language: Objective 1: Develop a unified theory of learning, representation, and generalization of language in neural networks: This work will examine how neural networks can generalize regularities in a language to newly learned words (a new word like gint probably rhymes with the regular pronunciation in mint and lint, not the exceptional pronuncation of pint). This research will inform how teaching a sample of words can yield widespread generalization to an entire language during first and second language acquisition. Objective 2: Create a model of language processing validated in multiple languages: Most modelling research to date has focused primarily on English. This research will study how neural networks adapt to the properties of different languages to explain key cross-linguistic differences (e.g., differential sensitivity to letter position in Hebrew vs. English readers). In turn, this will inform how neural networks are shaped by the properties of a range of languages, which can improve language instruction and remediation in many languages. Objective 3: Develop a model of ambiguous word processing and task performance. Simulations and empirical work related to this objective will determine whether a range of effects associated with semantically ambiguous words (e.g., bank, refers to a river in some contexts and a financial institute in others) are due to the time-course of meaning selection, or how the decision system taps into the language system. These investigations will inform theories of comprehension impairments, and contribute to industrial applications related to how brain-inspired AI systems identify a word's meaning.
冲击 了解语言处理对于每个加拿大人的福祉至关重要。这一主题的重要性体现在加拿大各省教育部在特殊语言相关项目上花费的45亿加元,包括对新移民的语言培训。这也体现在大脑启发模型为人工智能(AI)带来的主要工业机会中,例如微软的自然语言AI创造了100亿美元的收入。 因此,大脑语言系统的改进理论将为语言教学、补救和人工智能提供一系列创新方法。 计划我的研究重点是通过逐步构建和测试由模拟神经元组组成的语言神经网络模型来提高我们对文字处理神经基础的理解。我开发的模型通过结合系统和细胞神经科学的其他原理,改进了经典的、具有高度影响力的神经网络模型。 我的长期目标和相关的短期目标将通过建立在我之前对语言的以下关键方面的研究来开辟新天地: 目标一:在神经网络中开发语言学习、表示和泛化的统一理论:这项工作将研究神经网络如何将一种语言中的pint泛化为新学习的单词(像gint这样的新词可能与mint和lint的常规发音押韵,而不是pint的特殊发音)。这项研究将告知如何教一个样本的话可以产生广泛的推广到整个语言在第一和第二语言习得。 目标2:创建一个在多种语言中验证的语言处理模型:迄今为止,大多数建模研究主要集中在英语上。 这项研究将研究神经网络如何适应不同语言的特性,以解释关键的跨语言差异(例如,希伯来语读者与英语读者对字母位置的不同敏感性)。 反过来,这将告知神经网络如何由一系列语言的属性塑造,这可以改善许多语言的语言教学和补救。 目标3:建立歧义词处理和任务绩效的模型。 与这一目标相关的模拟和实证工作将确定与语义模糊的单词(例如,银行,在某些语境中指河流,在另一些语境中指金融机构)是由于意义选择的时间过程,或者决策系统如何进入语言系统。 这些研究将为理解障碍的理论提供信息,并有助于与大脑启发的人工智能系统如何识别单词含义相关的工业应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Armstrong, Blair其他文献

Diplopia in adult patients following cataract extraction and refractive surgery
  • DOI:
    10.1097/icu.0b013e32833bd850
  • 发表时间:
    2010-09-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Gunton, Kammi B.;Armstrong, Blair
  • 通讯作者:
    Armstrong, Blair
Evolution of severe lightning maculopathy visualized with spectral domain optical coherence tomography.

Armstrong, Blair的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Armstrong, Blair', 18)}}的其他基金

Advancing Neural Network Models of Language Processing
推进语言处理的神经网络模型
  • 批准号:
    RGPIN-2017-06310
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Advancing Neural Network Models of Language Processing
推进语言处理的神经网络模型
  • 批准号:
    RGPIN-2017-06310
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Advancing Neural Network Models of Language Processing
推进语言处理的神经网络模型
  • 批准号:
    RGPIN-2017-06310
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Advancing Neural Network Models of Language Processing
推进语言处理的神经网络模型
  • 批准号:
    RGPIN-2017-06310
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Advancing Neural Network Models of Language Processing
推进语言处理的神经网络模型
  • 批准号:
    RGPIN-2017-06310
  • 财政年份:
    2017
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Comprehending Ambiguous Words: Computational and Behavioural Investigations
理解歧义词:计算和行为研究
  • 批准号:
    358607-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Comprehending Ambiguous Words: Computational and Behavioural Investigations
理解歧义词:计算和行为研究
  • 批准号:
    358607-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Accounting for Category-specific Semantic Deficits: A Computational Implementation of Conceputal Topography Theory
解释特定类别的语义缺陷:概念地形理论的计算实现
  • 批准号:
    332855-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Postgraduate Scholarships - Master's
Accounting for Category-specific Semantic Deficits: A Computational Implementation of Conceputal Topography Theory
解释特定类别的语义缺陷:概念地形理论的计算实现
  • 批准号:
    332855-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Integrating Federated Split Neural Network with Artificial Stereoscopic Compound Eyes for Optical Flow Sensing in 3D Space with Precision
将联合分裂神经网络与人工立体复眼相结合,实现 3D 空间中的精确光流传感
  • 批准号:
    2332060
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
  • 批准号:
    23K24829
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
A Neural Network Management and Distribution System for Providing Super Multi-class Recognition Capability in Real Space
一种提供真实空间超多类别识别能力的神经网络管理与分发系统
  • 批准号:
    23K11120
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
  • 批准号:
    23K11177
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Basic research on neural network reconstruction and functional recovery after stroke
脑卒中后神经网络重建及功能恢复的基础研究
  • 批准号:
    23K10454
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deepening Graph Neural Network Technology
深化图神经网络技术
  • 批准号:
    23H03451
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
  • 批准号:
    2308530
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了