Statistical Methods to Map Disease Genes in Populations

绘制人群疾病基因图谱的统计方法

基本信息

  • 批准号:
    RGPIN-2018-04296
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Variation in DNA sequences reflects their relationships. The relationships can tell us about individual predisposition to inherited traits, and so are of use in mapping the genomic location of disease genes. The function of the mapped genes and their biochemical pathways can lead to personalized treatments for disease. The research program focuses on mapping the genomic location of genes that influence disease traits, using data on traits and on genetic variation in homologous DNA sequences. Statistical gene mapping looks for genomic regions with excess relatedness and excess trait similarity. To characterize the relatedness in a sample of DNA sequences, the research program will use their gene genealogy. The gene genealogy is a set of correlated ancestral trees across the genomic region. At trait-influencing locations on the genome, we expect excess clustering of similar trait values on the genealogical tree. Genealogical clustering of trait values is thus a basis for mapping disease genes. A short-term objective is to investigate the statistical properties of different measures of clustering on the genealogy. To cluster trait values on the genealogy, we must reconstruct it, either as a parameter or as a latent random variable. Cladistic methods view the genealogy as a parameter. However, mapping approaches that rely on cladistic reconstructions are potentially biased because they ignore uncertainty in the genealogy. A short-term goal is to characterize the bias and other statistical properties of clustering approaches applied to cladistic reconstructions. Instead of being viewed as parameters, genealogies may be viewed as latent random variables, and sampled from their posterior distribution given the genetic data. However, currently-available, MCMC samplers rely on approximations that break down for a larger number of sequences. A medium-term goal is to develop improved sampling methods with faster mixing, through the use of particle-marginal Metropolis-Hastings algorithms. To reduce the complexity of the state space, we will consider only partial genealogies going back 100 generations before present. Little information about the genomic location of low-frequency causal variants is likely to be gained from going further back in time. In the mapping of disease genes, accurate phenotyping is critical. For brain disorders, 3-dimensional imaging measurements provide objective assessments of cognitive capacity that are thought to be closer to genetic influences than questionnaire scores. Each image typically has millions of measurements, but the information on changes due to disease is thought to reside in only a subset. A second and longer-term focus of the research is to work closely with our brain-imaging collaborators to develop clinically-meaningful measures of trait similarities between individuals that can be integrated into the proposed gene-mapping methods.
DNA序列的变化反映了它们之间的关系。这种关系可以告诉我们个体对遗传特征的易感性,因此在绘制疾病基因的基因组位置时很有用。绘制的基因的功能及其生化途径可以导致疾病的个性化治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Graham, Jinko其他文献

A data-smoothing approach to explore and test gene-environment interaction in case-parent trios
Markov chain Monte Carlo sampling of gene genealogies conditional on unphased SNP genotype data
Simulating pedigrees ascertained for multiple disease-affected relatives
  • DOI:
    10.1186/s13029-018-0069-6
  • 发表时间:
    2018-10-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nieuwoudt, Christina;Jones, Samantha J.;Graham, Jinko
  • 通讯作者:
    Graham, Jinko
perfectphyloR: An R package for reconstructing perfect phylogenies
  • DOI:
    10.1186/s12859-019-3313-4
  • 发表时间:
    2019-12-23
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Karunarathna, Charith B.;Graham, Jinko
  • 通讯作者:
    Graham, Jinko
An exploration of linkage fine-mapping on sequences from case-control studies.
  • DOI:
    10.1002/gepi.22502
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Nickchi, Payman;Karunarathna, Charith;Graham, Jinko
  • 通讯作者:
    Graham, Jinko

Graham, Jinko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Graham, Jinko', 18)}}的其他基金

Statistical Methods to Map Disease Genes in Populations
绘制人群疾病基因图谱的统计方法
  • 批准号:
    RGPIN-2018-04296
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods to Map Disease Genes in Populations
绘制人群疾病基因图谱的统计方法
  • 批准号:
    RGPIN-2018-04296
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods to Map Disease Genes in Populations
绘制人群疾病基因图谱的统计方法
  • 批准号:
    RGPIN-2018-04296
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods to Map Disease Genes in Populations
绘制人群疾病基因图谱的统计方法
  • 批准号:
    RGPIN-2018-04296
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
New and efficient approaches to Markov chain Monte Carlo sampling of gene genealogies conditional on observed genetic data
以观察到的遗传数据为条件的基因谱系马尔可夫链蒙特卡罗抽样的新且有效的方法
  • 批准号:
    222886-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
New and efficient approaches to Markov chain Monte Carlo sampling of gene genealogies conditional on observed genetic data
以观察到的遗传数据为条件的基因谱系马尔可夫链蒙特卡罗抽样的新且有效的方法
  • 批准号:
    222886-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
New and efficient approaches to Markov chain Monte Carlo sampling of gene genealogies conditional on observed genetic data
以观察到的遗传数据为条件的基因谱系马尔可夫链蒙特卡罗抽样的新且有效的方法
  • 批准号:
    222886-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
New and efficient approaches to Markov chain Monte Carlo sampling of gene genealogies conditional on observed genetic data
以观察到的遗传数据为条件的基因谱系马尔可夫链蒙特卡罗抽样的新且有效的方法
  • 批准号:
    222886-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
New and efficient approaches to Markov chain Monte Carlo sampling of gene genealogies conditional on observed genetic data
以观察到的遗传数据为条件的基因谱系马尔可夫链蒙特卡罗抽样的新且有效的方法
  • 批准号:
    222886-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Improved statistical methods for identifying generic risk factors underlying complex diseases
改进统计方法来识别复杂疾病的一般危险因素
  • 批准号:
    222886-2007
  • 财政年份:
    2012
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Statistical Methods to Map Disease Genes in Populations
绘制人群疾病基因图谱的统计方法
  • 批准号:
    RGPIN-2018-04296
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods to Map Disease Genes in Populations
绘制人群疾病基因图谱的统计方法
  • 批准号:
    RGPIN-2018-04296
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods to Map Disease Genes in Populations
绘制人群疾病基因图谱的统计方法
  • 批准号:
    RGPIN-2018-04296
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Developing new statistical methods to map the longitudinal brain degeneration experienced by HIV-infected patients
开发新的统计方法来绘制艾滋病毒感染者经历的纵向脑退化图
  • 批准号:
    471667-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Postdoctoral Fellowships
Statistical Methods to Map Disease Genes in Populations
绘制人群疾病基因图谱的统计方法
  • 批准号:
    RGPIN-2018-04296
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Developing new statistical methods to map the longitudinal brain degeneration experienced by HIV-infected patients
开发新的统计方法来绘制艾滋病毒感染者经历的纵向脑退化图
  • 批准号:
    471667-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Postdoctoral Fellowships
Developing new statistical methods to map the longitudinal brain degeneration experienced by HIV-infected patients
开发新的统计方法来绘制艾滋病毒感染者经历的纵向脑退化图
  • 批准号:
    471667-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Postdoctoral Fellowships
Statistical Methods to Map Genes for Complex Traits
绘制复杂性状基因图谱的统计方法
  • 批准号:
    6789446
  • 财政年份:
    1999
  • 资助金额:
    $ 1.46万
  • 项目类别:
STATISTICAL METHODS TO MAP GENES FOR COMPLEX TRAITS
绘制复杂性状基因图谱的统计方法
  • 批准号:
    2866661
  • 财政年份:
    1999
  • 资助金额:
    $ 1.46万
  • 项目类别:
Statistical Methods to Map Genes for Complex Traits
绘制复杂性状基因图谱的统计方法
  • 批准号:
    7032625
  • 财政年份:
    1999
  • 资助金额:
    $ 1.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了