Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
基本信息
- 批准号:RGPIN-2018-04394
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Dirichlet form theory is one of the most active areas of modern probability theory and stochastic processes.
It establishes a bridge between analysis and probability, and the benefits flow in both directions. This proposed
research program is devoted to performing theoretical research in Dirichlet forms and related stochastic analysis.
We will focus on four important problems.
1) Hunt's hypothesis (H) and Getoor's conjecture. Hunt's hypothesis (H) plays a crucial role in probabilistic potential theory. It is well-known that any Markov process associated with a semi-Dirichlet
form essentially satisfies (H). However, there lacks powerful characterization in literature regarding the validity of
(H) for general Markov processes. In particular, Getoor's conjecture that essentially all Levy processes satisfy
(H) still remains unsolved. Based on the papers that we published in recent years, we hope we
can completely solve Getoor's conjecture and give an explicit criterion on the validity of (H) for general Markov
processes.
2) Construction of the two-parameter Fleming-Viot process. The two-parameter Dirichlet process has a lot of
applications in mathematical population genetics and Bayesian nonparametric statistics. Through the efforts of many researchers, people
now have good understanding of its various properties. However, people still do not know much about its
associated dynamic model. Construction of the two-parameter Fleming-Viot process with a general state space is a challenging open
problem in the area of combinatorial probability. We expect to solve this problem based on our own work
and other references published in recent years.
3) Large deviations for non-symmetric
Markov processes. Takeda and his collaborators have systematically developed the Donsker-Varadhan
type large deviation principle for time reversible Markov processes. However, not many results have been obtained for the non-symmetric
case. By virtue of recent results on
stochastic calculus of Markov processes associated with semi-Dirichlet forms and generalized Feynman-Kac semigroups, we expect to obtain the large
deviation principle for the occupation time distributions of general non-symmetric
Markov processes with generalized Feynman-Kac functionals and extend some remarkable results of Takeda's group to the framework of
semi-Dirichlet
forms.
4) Boundary value problems with non-local operators and singular nonlinearities. In recent years, people have used probabilistic approach to study various boundary value
problems. In this project, we will use the Dirichlet form theory to consider the boundary value problem for a
very general class of non-symmetric and nonlocal operators with singular nonlinearities. We expect to establish the existence, uniqueness, and regularity of solutions to the boundary value problem as well as the probabilistic representation of the solutions.
狄利克雷型理论是现代概率论和随机过程最活跃的领域之一。
它在分析和概率之间建立了一座桥梁,利益在两个方向流动。这一拟议
研究计划致力于在狄利克雷形式和相关的随机分析进行理论研究。
我们将重点关注四个重要问题。
1)Hunt的假设(H)和Getoor的猜想。Hunt假设(H)在概率势理论中起着至关重要的作用。众所周知,任何与半狄利克雷相关的马尔可夫过程
形式基本上满足(H)。然而,在文学作品中缺乏关于有效性的有力描述,
(H)一般马尔可夫过程。特别地,Getoor猜想基本上所有Levy过程都满足
(H)仍然没有解决。根据我们近年来发表的论文,我们希望我们
完全解决了Getoor猜想,并给出了一般Markov情形下(H)有效性的一个显式判据
流程.
2)双参数Fleming-Viot过程的构造双参数Dirichlet过程有很多
在数学群体遗传学和贝叶斯非参数统计中的应用。通过许多研究人员的努力,
现在对它的各种特性有了很好的了解。然而,人们对它的了解仍然不多。
相关动态模型构造具有一般状态空间的双参数Fleming-Viot过程是一个具有挑战性的开放性问题。
组合概率领域的问题。我们期望通过自己的工作来解决这个问题
以及近年来发表的其他参考文献。
3)非对称的大偏差
马尔可夫过程武田和他的合作者系统地开发了Donsker-Varadhan
型大偏差原理。然而,对于非对称的,
案子根据最近的研究结果,
随机微积分的马尔可夫过程与半狄利克雷形式和广义Feynman-Kac半群,我们期望获得大的
一般非对称占有时间分布的偏差原理
本文讨论了具有广义Feynman-Kac泛函的Markov过程,并将Takeda群的一些重要结果推广到
半狄利克雷
forms.
4)具非局部算子及奇异非线性项的边值问题。近年来,人们用概率方法研究各种边值问题
问题在这个项目中,我们将使用Dirichlet形式理论来考虑边值问题,
具有奇异非线性的非对称和非局部算子的非常一般的类。我们期望建立边值问题解的存在性、唯一性和正则性以及解的概率表示。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sun, Wei其他文献
A novel carbon price prediction model combines the secondary decomposition algorithm and the long short-term memory network
- DOI:
10.1016/j.energy.2020.118294 - 发表时间:
2020-09-15 - 期刊:
- 影响因子:9
- 作者:
Sun, Wei;Huang, Chenchen - 通讯作者:
Huang, Chenchen
Influence of uric acid amendment on the in-vessel process of composting composite food waste
尿酸改良剂对复合餐厨垃圾堆肥堆肥堆肥过程的影响
- DOI:
10.1002/jctb.3793 - 发表时间:
2012-11 - 期刊:
- 影响因子:3.4
- 作者:
An, Chun-jiang;Huang, Guo-he;Li, Sheng;Yu, Hui;Sun, Wei;Peng, Kuang - 通讯作者:
Peng, Kuang
Multicolor fluorescent semiconducting polymer dots with narrow emissions and high brightness.
- DOI:
10.1021/nn304376z - 发表时间:
2013-01-22 - 期刊:
- 影响因子:17.1
- 作者:
Rong, Yu;Wu, Changfeng;Yu, Jiangbo;Zhang, Xuanjun;Ye, Fangmao;Zeigler, Maxwell;Gallina, Maria Elena;Wu, I-Che;Zhang, Yong;Chan, Yang-Hsiang;Sun, Wei;Uvdal, Kajsa;Chiu, Daniel T. - 通讯作者:
Chiu, Daniel T.
KChIP4a regulates Kv4.2 channel trafficking through PKA phosphorylation.
- DOI:
10.1016/j.mcn.2009.12.005 - 发表时间:
2010-03 - 期刊:
- 影响因子:3.5
- 作者:
Lin, Lin;Sun, Wei;Wikenheiser, Andrew M.;Kung, Faith;Hoffman, Dax A. - 通讯作者:
Hoffman, Dax A.
Computer-Aided Discovery and Characterization of Novel Ebola Virus Inhibitors
- DOI:
10.1021/acsdmedchem.8b00035 - 发表时间:
2018-04-26 - 期刊:
- 影响因子:7.3
- 作者:
Capuzzi, Stephen J.;Sun, Wei;Tropsha, Alexander - 通讯作者:
Tropsha, Alexander
Sun, Wei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sun, Wei', 18)}}的其他基金
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
- 批准号:
RGPIN-2018-04394 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
- 批准号:
RGPIN-2018-04394 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
- 批准号:
RGPIN-2018-04394 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
- 批准号:
RGPIN-2018-04394 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
- 批准号:
311945-2013 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
- 批准号:
311945-2013 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
- 批准号:
311945-2013 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
- 批准号:
311945-2013 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
- 批准号:
311945-2013 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear filtering and stochastic analysis
非线性滤波和随机分析
- 批准号:
311945-2008 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
- 批准号:
RGPIN-2018-04394 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
- 批准号:
RGPIN-2018-04394 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
- 批准号:
RGPIN-2018-04394 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
- 批准号:
RGPIN-2018-04394 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
- 批准号:
311945-2013 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
- 批准号:
311945-2013 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
- 批准号:
311945-2013 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
- 批准号:
311945-2013 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Stochastic analysis of Markov processes by Dirichlet forms and its applications
马尔可夫过程的狄利克雷形式随机分析及其应用
- 批准号:
26247008 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
- 批准号:
311945-2013 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual