Semiconductor Nanowire-based Quantum Light Sources for Quantum Networks

用于量子网络的基于半导体纳米线的量子光源

基本信息

  • 批准号:
    RGPIN-2018-05438
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The quantum network, whether as a platform to transfer information securely or to share quantum information amongst isolated few-qubit quantum computers, is becoming a reality. To build such a network will require quantum light sources operating at wavelengths where fibre losses are minimum (1310 and 1550nm). In order to achieve sufficient transmission rates, the quantum light sources will need to produce single photons and entangled photon pairs with near-unity efficiency. At present, sources are probabilistic (non-linear crystals or attenuated lasers) which limit efficiencies to ~1%. This program of research proposes to develop on-chip quantum light sources that combine the excellent optical properties of III-V nanowire quantum dots (NW QDs) with the low propagation losses of silicon-based photonics. The long term goal is to provide a scalable solution to generating quantum light with near unity efficiency and available at high repetition rates. Importantly, these photons will be generated at telecom wavelengths compatible with long-haul telecommunication fibres. The availability of such sources will greatly facilitate their implementation in secure quantum networks, where proof of principle has already been demonstrated and a drive for higher key transfer rates is foreseeable. We have an established process whereby individual NW QDs are grown at pre-selected positions on the growth substrate. Importantly, the NW geometry lends itself to a “pick and place” approach for on-chip integration, essentially allowing for the physical manipulation of single quantum emitters. On-chip integration will be achieved by picking up individual NWs from the growth substrate and placing them at specific locations on a substrate prepared with the appropriate photonic circuitry. The research program will start with optimizing source efficiency for devices operating at wavelengths of ~900nm using a SiN on-chip platform (PhD #1). Photonic structures (wavequides, resonators) will be designed for optimal coupling and spontaneous emission rates. The next stage of the project will develope NW sources at telecom wavelengths of 1310nm and 1550nm (PhD#2). These sources will be integrated on-chip using a silicon-on-insulator (SOI) platform. The know-how gained in SiN photonic circuits will be applied to Si to produce telecom wavelength sources operating at GHz emission rates (PhD #1&2). In parallel, a theoretical understanding of the quantum optical properties of NW QDs and their interactions with the environment will be developed (PDF#1). The last stage of the project will explore geometries and growth conditions whereby the III-V NWs can be grown directly on Si with a growth direction parallel to the substrate (PhD #3). If successful, this growth mode can be applied to pre-fabricated SOI photonic circuits to grow telecom wavelength single QDs at pre-selected positions, a truly scalable on-chip platform.
量子网络,无论是作为安全传输信息的平台,还是在孤立的少量子位量子计算机之间共享量子信息的平台,正在成为现实。要建立这样的网络,需要量子光源工作在光纤损耗最小的波长(1310和1550nm)。为了达到足够的传输速率,量子光源需要产生接近统一效率的单光子和纠缠光子对。目前,光源是概率的(非线性晶体或衰减激光),其效率限制在~1%。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dalacu, Dan其他文献

Pump power control of photon statistics in a nanowire quantum dot
  • DOI:
    10.1103/physrevb.102.115401
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Dalacu, Dan;Northeast, David B.;Oblak, Daniel
  • 通讯作者:
    Oblak, Daniel
On-Chip Integration of Single Photon Sources via Evanescent Coupling of Tapered Nanowires to SiN Waveguides
  • DOI:
    10.1002/qute.201900021
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Mnaymneh, Khaled;Dalacu, Dan;Williams, Robin L.
  • 通讯作者:
    Williams, Robin L.
In-situ tuning of individual position-controlled nanowire quantum dots via laser-induced intermixing
  • DOI:
    10.1063/1.5040268
  • 发表时间:
    2018-07-30
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Fiset-Cyr, Alexis;Dalacu, Dan;Williams, Robin L.
  • 通讯作者:
    Williams, Robin L.
Dynamic Strain Modulation of a Nanowire Quantum Dot Compatible with a Thin-Film Lithium Niobate Photonic Platform.
  • DOI:
    10.1021/acsphotonics.3c00821
  • 发表时间:
    2023-10-18
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Descamps, Thomas;Schetelat, Tanguy;Gao, Jun;Poole, Philip J.;Dalacu, Dan;Elshaari, Ali W.;Zwiller, Val
  • 通讯作者:
    Zwiller, Val
Selective-area vapor-liquid-solid growth of tunable InAsP quantum dots in nanowires
  • DOI:
    10.1063/1.3600777
  • 发表时间:
    2011-06-20
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Dalacu, Dan;Mnaymneh, Khaled;Williams, Robin L.
  • 通讯作者:
    Williams, Robin L.

Dalacu, Dan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dalacu, Dan', 18)}}的其他基金

Semiconductor Nanowire-based Quantum Light Sources for Quantum Networks
用于量子网络的基于半导体纳米线的量子光源
  • 批准号:
    RGPIN-2018-05438
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Semiconductor Nanowire-based Quantum Light Sources for Quantum Networks
用于量子网络的基于半导体纳米线的量子光源
  • 批准号:
    RGPIN-2018-05438
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Semiconductor Nanowire-based Quantum Light Sources for Quantum Networks
用于量子网络的基于半导体纳米线的量子光源
  • 批准号:
    RGPIN-2018-05438
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Semiconductor Nanowire-based Quantum Light Sources for Quantum Networks
用于量子网络的基于半导体纳米线的量子光源
  • 批准号:
    DGECR-2018-00189
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Launch Supplement
Semiconductor Nanowire-based Quantum Light Sources for Quantum Networks
用于量子网络的基于半导体纳米线的量子光源
  • 批准号:
    RGPIN-2018-05438
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

A Path to Superconducting Nanowire Readout of Xe- based detectors
Xe 探测器的超导纳米线读数之路
  • 批准号:
    ST/Y509929/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Grant
Printable nanowire-based materials for the seamless integration of electronic functionality into textiles
可印刷纳米线材料,用于将电子功能无缝集成到纺织品中
  • 批准号:
    RGPIN-2019-04294
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Phosphide-based nanowire for visible and near-infrared miniature photon emitters
用于可见光和近红外微型光子发射器的磷化物纳米线
  • 批准号:
    EP/W002752/1
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Grant
Semiconductor Nanowire-based Quantum Light Sources for Quantum Networks
用于量子网络的基于半导体纳米线的量子光源
  • 批准号:
    RGPIN-2018-05438
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Semiconductor Nanowire-based Quantum Light Sources for Quantum Networks
用于量子网络的基于半导体纳米线的量子光源
  • 批准号:
    RGPIN-2018-05438
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Improvement of current density and DW velocity based on RE-TM nanowire for 100Gbps
基于 RE-TM 纳米线的 100Gbps 电流密度和 DW 速度的改进
  • 批准号:
    21K14202
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Printable nanowire-based materials for the seamless integration of electronic functionality into textiles
可印刷纳米线材料,用于将电子功能无缝集成到纺织品中
  • 批准号:
    RGPIN-2019-04294
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Printable nanowire-based materials for the seamless integration of electronic functionality into textiles
可印刷纳米线材料,用于将电子功能无缝集成到纺织品中
  • 批准号:
    RGPAS-2019-00108
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
RAPID: Silver and Copper-based Nanowire Structures for Antiviral Applications
RAPID:用于抗病毒应用的银基和铜基纳米线结构
  • 批准号:
    2028542
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Printable nanowire-based materials for the seamless integration of electronic functionality into textiles
可印刷纳米线材料,用于将电子功能无缝集成到纺织品中
  • 批准号:
    RGPIN-2019-04294
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了