Analysing visual behaviours of articulated objects from images and videos
从图像和视频中分析铰接物体的视觉行为
基本信息
- 批准号:RGPIN-2019-04575
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Every day, an enormous amount of images and video clips are produced by cameras around the world, including our mobile phone cameras. The focus of attention in the images and videos is often about human individuals and their behaviours. As one might expect, the ability to interpret human visual behaviours has become a central theme in computer vision, which has indeed a wide spectrum of applications. At its root is a set of fundamental computer vision problems, including pose estimation and action detection of individuals from images and videos, among others.
Thanks to the recent advances in camera hardware and machine learning technologies, now there are several dedicated systems with impressive results in interpreting human full-body behaviours, and we start to witness their influence in everyday life, ranging from Microsoft Kinect in gaming to the cashier-less Amazon Go grocery stores. My research group has been among the first in developing algorithms and demonstration systems in analysing 3D human hand poses from depth images (2013), as well as 3D lab animal behaviours from a depth camera, such as lab mouse in the open-field arena and zebrafish in the fish tank (2017). Meanwhile, there are still many hurdles to overcome.
The proposed research program is to advance the state-of-the-art in visual behaviour analysis, with the long term goal of enabling machines to properly see and interact with a human inhabited environment. In particular, it aims to address some of the main shortcomings by investigating the following two directions. In the first direction, we focus on devising learning algorithms that follow the geometric constraints of articulated objects, as well as curating comprehensive benchmarks with rich annotations to facilitate the development of holistic approaches. Moreover, instead of elaborating around the traditional frame-based cameras that have the inherit drawbacks including latency, memory, and computational burdens, we plan to examine the synergism between our geometry and learning based approach and the very recent dynamic vision cameras. In the second direction, we investigate important applications that may go beyond human full-bodies. It is of strong interest to look at the behaviours of human hands, as well as animals. It is also timely to review sign language applications that would help disadvantaged people and have significant societal impacts.
Potential impact of this proposal includes (1) addressing the shortcomings of (self-)occlusion, and inconsistent & incomplete annotations, (2) introducing new benchmark for visual behaviour analysis, and (3) expediting the dissemination of new advances in related practical applications, such as visual animal behaviour analysis and visual sign language translation. The HQP trained through this research program will gain research as well as hands-on experiences in computer vision and machine learning that could be valuable in their future academic or industry careers.
每天,世界各地的相机都会产生大量的图像和视频片段,包括我们的手机摄像头。图像和视频的关注焦点通常是关于人类个体及其行为的。正如人们所期望的那样,解释人类视觉行为的能力已经成为计算机视觉的中心主题,它确实有广泛的应用。其根源是一系列基本的计算机视觉问题,包括从图像和视频中对个体进行姿态估计和动作检测等。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cheng, Li其他文献
Magneto-mechanical properties of anisotropic magnetorheological elastomers with tilt angle of magnetic chain under compression mode
- DOI:
10.1016/j.jmmm.2023.170441 - 发表时间:
2023-02-18 - 期刊:
- 影响因子:2.7
- 作者:
Wang, Leizhi;Chen, Zhaobo;Cheng, Li - 通讯作者:
Cheng, Li
The Efficacy and Safety of Oral Irrigator on the Control of Dental Plaque and Gingivitis: A Randomized, Single-Blind, Parallel-Group Clinical Trial.
- DOI:
10.3390/ijerph20043726 - 发表时间:
2023-02-20 - 期刊:
- 影响因子:0
- 作者:
Ren, Xiaolin;He, Jing;Cheng, Ran;Chen, Yulun;Xiang, Yong;Zhang, Yuhan;Jiang, Sulan;Li, Jia;Cheng, Li;Hu, Tao - 通讯作者:
Hu, Tao
Development and Validation of a Nomograph Model for Post-Operative Central Nervous System Infection after Craniocerebral Surgery.
- DOI:
10.3390/diagnostics13132207 - 发表时间:
2023-06-29 - 期刊:
- 影响因子:3.6
- 作者:
Cheng, Li;Bai, Wenhui;Song, Ping;Zhou, Long;Li, Zhiyang;Gao, Lun;Zhou, Chenliang;Cai, Qiang - 通讯作者:
Cai, Qiang
A Quasi-Zero-Stiffness-Based Sensor System in Vibration Measurement
振动测量中的准零刚度传感器系统
- DOI:
10.1109/tie.2013.2297297 - 发表时间:
2014-01 - 期刊:
- 影响因子:7.7
- 作者:
Sun, Xiuting;Jing, Xingjian;Xu, Jian;Cheng, Li - 通讯作者:
Cheng, Li
beta-Catenin and Rho GTPases as downstream targets of TGF-beta 1 during pulp repair
β-连环蛋白和 Rho GTP 酶作为牙髓修复过程中 TGF-β1 的下游靶标
- DOI:
- 发表时间:
- 期刊:
- 影响因子:3.9
- 作者:
Shao, Mei-Ying;Cheng, Ran;Wang, Feng-Ming;Yang, Hui;Cheng, Li;Hu, Tao - 通讯作者:
Hu, Tao
Cheng, Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cheng, Li', 18)}}的其他基金
Analysing visual behaviours of articulated objects from images and videos
从图像和视频中分析铰接物体的视觉行为
- 批准号:
RGPIN-2019-04575 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Analysing visual behaviours of articulated objects from images and videos
从图像和视频中分析铰接物体的视觉行为
- 批准号:
RGPIN-2019-04575 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Analysing visual behaviours of articulated objects from images and videos
从图像和视频中分析铰接物体的视觉行为
- 批准号:
DGECR-2019-00050 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Launch Supplement
Analysing visual behaviours of articulated objects from images and videos
从图像和视频中分析铰接物体的视觉行为
- 批准号:
RGPIN-2019-04575 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Noise and vibration control inside cavities
空腔内的噪声和振动控制
- 批准号:
121666-1999 - 财政年份:2001
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Noise and vibration control inside cavities
空腔内的噪声和振动控制
- 批准号:
121666-1999 - 财政年份:2000
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Noise and vibration control inside cavities
空腔内的噪声和振动控制
- 批准号:
121666-1999 - 财政年份:1999
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
A high voltage power amplifier system
一种高压功放系统
- 批准号:
218557-1999 - 财政年份:1998
- 资助金额:
$ 3.35万 - 项目类别:
Research Tools and Instruments - Category 1 (<$150,000)
Modélisation vibroaccoustique des structures par une approche mixe utilisant la compliance mécanique
利用机械顺应性混合方法对结构振动声学进行建模
- 批准号:
121666-1995 - 财政年份:1998
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Active vibration control of airplane floor structures
飞机地板结构的主动振动控制
- 批准号:
193505-1996 - 财政年份:1998
- 资助金额:
$ 3.35万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
引入昆虫复视机制的粒子滤波算法及其视觉伺服应用研究
- 批准号:61175096
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
情感与视觉记忆:它们的相互作用及神经环路研究
- 批准号:91132302
- 批准年份:2011
- 资助金额:300.0 万元
- 项目类别:重大研究计划
基于图像的Visuall Hull的立体感实时绘制及其高速图形处理硬件(GPU)的实现机制
- 批准号:60573149
- 批准年份:2005
- 资助金额:21.0 万元
- 项目类别:面上项目
基于多幅图象的Visual Hull重构及表面属性建模算法研究
- 批准号:60373031
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Understanding how predictions modulate visual perception
了解预测如何调节视觉感知
- 批准号:
DE240100327 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Early Career Researcher Award
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
- 批准号:
EP/Y015878/1 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Fellowship
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
III: Small: Query-By-Sketch: Simplifying Video Clip Retrieval Through A Visual Query Paradigm
III:小:按草图查询:通过可视化查询范式简化视频剪辑检索
- 批准号:
2335881 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
VISUALと接ぎ木を併用した維管束発生の階層的理解
使用 VISUAL 和移植对维管束发育的分层理解
- 批准号:
23K23910 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
黄斑様構造(Visual streak)を持つマウスの視機能解析
黄斑样结构(视觉条纹)小鼠的视觉功能分析
- 批准号:
24K18372 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Promoting Metacognition in Visual Analytics
职业:促进视觉分析中的元认知
- 批准号:
2340539 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Continuing Grant
IUCRC Planning Grant Purdue University: Center for Visual Structural Expertise for Resilience C-ViSER
IUCRC 规划拨款 普渡大学:复原力视觉结构专业知识中心 C-ViSER
- 批准号:
2310930 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
IUCRC Planning Grant University of Houston: Center for Visual Structural Expertise for Resilience (C-ViSER)
IUCRC 规划拨款 休斯顿大学:复原力视觉结构专业知识中心 (C-ViSER)
- 批准号:
2311019 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant














{{item.name}}会员




