Genetically encoded tools to control any mammalian cell function with any desired stimulus
通过任何所需刺激控制任何哺乳动物细胞功能的基因编码工具
基本信息
- 批准号:RGPIN-2019-04183
- 负责人:
- 金额:$ 3.06万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The development of genetically encoded tools like channelrhodopsin-2 has allowed the stimuli of light to control membrane depolarization of neurons, sparking a steady stream of breakthroughs in our understanding of brain function. While light as a stimuli has strengths (e.g. precise spatial and temporal activation), it also has weaknesses (e.g. low tissue penetration and invasive animal surgery). Furthermore, other than membrane depolarization as a cell function, biologists have sought control over cell death to determine the biological role of the particular cell types and control over gene expression to determine the function of particular genes under regulation.
My ultimate research objective is to engineer genetically encoded tools that will allow the control of any mammalian cell function with any desired stimuli. Our group believes this is possible through Ca2+ rewiring combining proteins that generate Ca2+ signals upon binding desired stimuli with proteins that control cell function when activated by Ca2+ signals.
First in the proposal, we will develop genetically-encoded tools to allow Ca2+ influx and membrane depolarization to be controlled by magnetic fields. Magnetic fields are permeable through tissues that will allow neurons to be stimulated deep inside the brain with no surgery in contrast with light-based or electrode-based approaches. Second, we will develop Ca2+-activated caspases. Caspases are central cysteine proteases in the apoptotic cell death that function to dismantle the cell machinery by cleaving after an aspartate residue in their substrate. By co-expressing the chimeric caspase with a chimeric receptor that generates a Ca2+ signal in response to binding its target ligand, we aim to induce cell death in response to any stimuli via Ca2+ rewiring. Lastly, we will develop inducible gene expression systems. Through the ubiquitous NFAT pathway, Ca2+ oscillations activate gene expression. By co-expressing a chimeric receptor with natural or synthetic genes that enhance Ca2+ oscillations, we aim to induce gene expression in response to any stimuli via Ca2+ rewiring.
The ability to control any mammalian cell function (e.g. Ca2+ influx, cell death and gene expression) with any desired stimuli (e.g. magnetic fields) would allow us to ask biological questions that are currently not possible. For example, magnetic field stimuli would allow activation of the areas deep inside the brain such as the hippocampus to probe questions about the formation of memories. Cell ablation rewired to any stimuli would allow cell death to be customized to the microenvironment (e.g. patterns of morphogens) to probe questions about their importance in development of tissues. Gene expression rewired to any stimuli would expand the current paucity of reliable inducible promoters for biomedical research. If rewired to magnetic fields, we could perform targeted deep tissue ablation and gene expression in the brain and spinal cord.
像通道视紫红质-2这样的基因编码工具的发展使得光的刺激能够控制神经元的膜去极化,从而在我们对大脑功能的理解方面带来了源源不断的突破。 虽然光作为刺激物具有优势(例如精确的空间和时间激活),但它也具有弱点(例如低组织穿透性和侵入性动物手术)。此外,除了作为细胞功能的膜去极化之外,生物学家还寻求控制细胞死亡以确定特定细胞类型的生物学作用,以及控制基因表达以确定受调控的特定基因的功能。
我的最终研究目标是设计基因编码工具,使任何哺乳动物细胞的功能与任何期望的刺激控制。 我们的研究小组认为,通过Ca 2+重新布线,将在结合所需刺激物时产生Ca 2+信号的蛋白质与在被Ca 2+信号激活时控制细胞功能的蛋白质结合起来,这是可能的。
首先,我们将开发基因编码的工具,使Ca 2+流入和膜去极化受到磁场的控制。 与基于光或基于电极的方法相比,磁场可以透过组织,这将允许神经元在大脑深处受到刺激,而无需手术。第二,我们将开发Ca 2+激活的半胱天冬酶。半胱天冬酶是凋亡性细胞死亡中的中心半胱氨酸蛋白酶,其功能是通过在其底物中的天冬氨酸残基后裂解来拆除细胞机器。通过共表达嵌合半胱天冬酶与嵌合受体,产生一个Ca 2+信号,以响应结合其靶配体,我们的目标是诱导细胞死亡响应任何刺激通过Ca 2+重新布线。最后,我们将开发诱导型基因表达系统。 通过无处不在的NFAT途径,Ca 2+振荡激活基因表达。 通过共表达嵌合受体与天然或合成的基因,增强Ca 2+振荡,我们的目标是诱导基因表达响应任何刺激通过Ca 2+重新布线。
用任何所需的刺激(例如磁场)控制任何哺乳动物细胞功能(例如Ca 2+流入,细胞死亡和基因表达)的能力将使我们能够提出目前不可能的生物学问题。例如,磁场刺激可以激活大脑深处的区域,如海马体,以探索有关记忆形成的问题。 细胞消融重新连接到任何刺激将允许细胞死亡被定制到微环境(例如形态发生素的模式),以探测关于它们在组织发育中的重要性的问题。基因表达与任何刺激重新连接,将扩大目前缺乏可靠的可诱导启动子的生物医学研究。 如果重新连接到磁场,我们可以进行有针对性的深层组织消融和大脑和脊髓中的基因表达。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Truong, Kevin其他文献
Engineered cell migration to lesions linked to autoimmune disease
- DOI:
10.1002/bit.26523 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:3.8
- 作者:
Al Mosabbir, Abdullah;Qudrat, Anam;Truong, Kevin - 通讯作者:
Truong, Kevin
Computational modeling approaches for studying of synthetic biological networks
- DOI:
10.2174/157489308784340667 - 发表时间:
2008-05-01 - 期刊:
- 影响因子:4
- 作者:
Pham, Elizabeth;Li, Isaac;Truong, Kevin - 通讯作者:
Truong, Kevin
Sequence reversed peptide from CaMKK binds to calmodulin in reversible Ca2+-dependent manner
- DOI:
10.1016/j.bbrc.2006.11.123 - 发表时间:
2007-01-26 - 期刊:
- 影响因子:3.1
- 作者:
Li, Isaac T. S.;Ranjith, K. R.;Truong, Kevin - 通讯作者:
Truong, Kevin
Genomic integration occurs in the packaging cell via unexported lentiviral precursors
- DOI:
10.1007/s10529-016-2164-6 - 发表时间:
2016-10-01 - 期刊:
- 影响因子:2.7
- 作者:
Al Mosabbir, Abdullah;Truong, Kevin - 通讯作者:
Truong, Kevin
Programming Membrane Fusion and Subsequent Apoptosis into Mammalian Cells
- DOI:
10.1021/sb3000468 - 发表时间:
2013-04-01 - 期刊:
- 影响因子:4.7
- 作者:
Nagaraj, Seema;Mills, Evan;Truong, Kevin - 通讯作者:
Truong, Kevin
Truong, Kevin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Truong, Kevin', 18)}}的其他基金
Genetically encoded tools to control any mammalian cell function with any desired stimulus
通过任何所需刺激控制任何哺乳动物细胞功能的基因编码工具
- 批准号:
RGPIN-2019-04183 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Genetically encoded tools to control any mammalian cell function with any desired stimulus
通过任何所需刺激控制任何哺乳动物细胞功能的基因编码工具
- 批准号:
RGPIN-2019-04183 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Genetically encoded tools to control any mammalian cell function with any desired stimulus
通过任何所需刺激控制任何哺乳动物细胞功能的基因编码工具
- 批准号:
RGPIN-2019-04183 - 财政年份:2019
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Elucidating `design' principles for engineering synthetic protein networks
阐明工程合成蛋白质网络的“设计”原则
- 批准号:
RGPIN-2014-05322 - 财政年份:2018
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Elucidating ‘design’ principles for engineering synthetic protein networks
阐明工程合成蛋白质网络的“设计”原则
- 批准号:
RGPIN-2014-05322 - 财政年份:2017
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Elucidating ‘design’ principles for engineering synthetic protein networks
阐明工程合成蛋白质网络的“设计”原则
- 批准号:
RGPIN-2014-05322 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Elucidating ‘design’ principles for engineering synthetic protein networks
阐明工程合成蛋白质网络的“设计”原则
- 批准号:
RGPIN-2014-05322 - 财政年份:2015
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Elucidating ‘design’ principles for engineering synthetic protein networks
阐明工程合成蛋白质网络的“设计”原则
- 批准号:
RGPIN-2014-05322 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Development of computational tools for studying protein sequences, structures and signaling networks
开发用于研究蛋白质序列、结构和信号网络的计算工具
- 批准号:
283170-2008 - 财政年份:2010
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Development of computational tools for studying protein sequences, structures and signaling networks
开发用于研究蛋白质序列、结构和信号网络的计算工具
- 批准号:
283170-2008 - 财政年份:2009
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Genetically encoded tools to control any mammalian cell function with any desired stimulus
通过任何所需刺激控制任何哺乳动物细胞功能的基因编码工具
- 批准号:
RGPIN-2019-04183 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Expanding the set of genetically encoded tools for compartment-specific manipulation of redox metabolism in living cells
扩展用于活细胞中氧化还原代谢的隔室特异性操作的基因编码工具集
- 批准号:
10602541 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Expanding the set of genetically encoded tools for compartment-specific manipulation of redox metabolism in living cells
扩展用于活细胞中氧化还原代谢的隔室特异性操作的基因编码工具集
- 批准号:
10272745 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Genetically encoded tools to control any mammalian cell function with any desired stimulus
通过任何所需刺激控制任何哺乳动物细胞功能的基因编码工具
- 批准号:
RGPIN-2019-04183 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Expanding the set of genetically encoded tools for compartment-specific manipulation of redox metabolism in living cells
扩展用于活细胞中氧化还原代谢的隔室特异性操作的基因编码工具集
- 批准号:
10437022 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Expanding the set of genetically encoded tools for compartment-specific manipulation of redox metabolism in living cells
扩展用于活细胞中氧化还原代谢的隔室特异性操作的基因编码工具集
- 批准号:
10582469 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Defining and targeting the compartmentalization of redox metabolism in aging using novel genetically encoded tools
使用新型基因编码工具定义和瞄准衰老过程中氧化还原代谢的划分
- 批准号:
10266841 - 财政年份:2020
- 资助金额:
$ 3.06万 - 项目类别:
Genetically encoded tools to control any mammalian cell function with any desired stimulus
通过任何所需刺激控制任何哺乳动物细胞功能的基因编码工具
- 批准号:
RGPIN-2019-04183 - 财政年份:2019
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Genetically-Encoded Tools for Manipulation of Ion Channel and Receptor Functions
用于操纵离子通道和受体功能的基因编码工具
- 批准号:
8653031 - 财政年份:2011
- 资助金额:
$ 3.06万 - 项目类别:
Genetically-Encoded Tools for Manipulation of Ion Channel and Receptor Functions
用于操纵离子通道和受体功能的基因编码工具
- 批准号:
8179657 - 财政年份:2011
- 资助金额:
$ 3.06万 - 项目类别:














{{item.name}}会员




