Systems, Control and Mean Field Games on Networks

网络上的系统、控制和平均场博弈

基本信息

  • 批准号:
    RGPIN-2019-05336
  • 负责人:
  • 金额:
    $ 4.01万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Mean Field Game (MFG) theory for large agent population systems has revolutionized both non-cooperative game theory and large scale systems control. The core of the MFG Nash equilibrium theory is the pair of PDEs consisting of (i) the Hamilton-Jacobi-Bellman (HJB) equation of optimal control for a generic agent, and (ii) the Fokker-Planck-Kolmogorov (FPK) equation (or the equivalent stochastic SDE) for the probability distribution of the state of such an agent, both linked by that distribution. In this program three new directions are proposed in the analysis and control of complex large scale systems: respectively, the new Graphon Network Control (GNC) theory, the newly introduced Graphon Mean Field Game (GMFG) theory, and their various New Application domains; their key common feature is the extension of MFG based methods to systems on networks. First, the advancement is planned for our newly introduced (MFG based) GNC theory of the control of complex network systems using infinite node graph limit (graphon) theory and infinite dimensional systems control theory. This methodology permits the design of controls for large complex finite network systems via their derivation for the simpler infinite limit systems. Research topics in GNC theory include advances in graphon system controllability, observability, and system identification. Second, we propose research in the new direction in MFG theory recently introduced by the proposer which greatly generalizes standard theory so that it applies to populations distributed on unbounded networks where the equilibria are given by the so-called Graphon MFG (GMFG) equations. Key areas of research in GMFG theory now include existence and uniqueness theory, epsilon - Nash approximation theory, and GMFG systems classification via graphon structures, together with major-minor agent system theory, systems with hybrid agents with distinct modes of behaviour and systems where the major agents are not completely observable. Third, new applications domains will be investigated, including: (i) GNC: Methodologies for data based GNC from real world networks, e.g. electricity grids, and neuronal and social networks. (ii) MFG: applications of state estimation (i.e. filtering) theory to finance with hybrid dynamical major agents and large population minor agents. (iii) GMFG: Modelling, estimation, dynamics and control will be employed in applications to instances of systems in finance, economics, transportation, epidemiology, neuronal systems, flocking, evolutionary games and to the formation and decay of coalitions.
大智能体群体系统的平均场博弈理论对非合作博弈理论和大规模系统控制都产生了革命性的影响。MFG纳什均衡理论的核心是一对偏微分方程,由(i)通用代理的最优控制的Hamilton-Jacobi-Bellman (HJB)方程和(ii)这种代理状态的概率分布的Fokker-Planck-Kolmogorov (FPK)方程(或等效的随机SDE)组成,两者由该分布联系起来。本文提出了复杂大系统分析与控制的三个新方向:分别是新的石墨网络控制理论(GNC)和新引入的石墨平均场博弈理论(GMFG)及其各种新的应用领域;它们的主要共同特征是将基于MFG的方法扩展到网络上的系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Caines, Peter其他文献

Caines, Peter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Caines, Peter', 18)}}的其他基金

Systems, Control and Mean Field Games on Networks
网络上的系统、控制和平均场博弈
  • 批准号:
    RGPIN-2019-05336
  • 财政年份:
    2022
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Systems, Control and Mean Field Games on Networks
网络上的系统、控制和平均场博弈
  • 批准号:
    RGPIN-2019-05336
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Systems, Control and Mean Field Games on Networks
网络上的系统、控制和平均场博弈
  • 批准号:
    RGPIN-2019-05336
  • 财政年份:
    2019
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Mean Field, Distributed and Hybrid Control Systems
平均场、分布式和混合控制系统
  • 批准号:
    RGPIN-2014-04373
  • 财政年份:
    2018
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Mean Field, Distributed and Hybrid Control Systems
平均场、分布式和混合控制系统
  • 批准号:
    RGPIN-2014-04373
  • 财政年份:
    2017
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Mean Field, Distributed and Hybrid Control Systems
平均场、分布式和混合控制系统
  • 批准号:
    RGPIN-2014-04373
  • 财政年份:
    2016
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Mean Field, Distributed and Hybrid Control Systems
平均场、分布式和混合控制系统
  • 批准号:
    RGPIN-2014-04373
  • 财政年份:
    2015
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Mean Field, Distributed and Hybrid Control Systems
平均场、分布式和混合控制系统
  • 批准号:
    RGPIN-2014-04373
  • 财政年份:
    2014
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Distributed, hierarchical & hybrid control systems
分布式、分层
  • 批准号:
    1329-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Distributed, hierarchical & hybrid control systems
分布式、分层
  • 批准号:
    1329-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Systems, Control and Mean Field Games on Networks
网络上的系统、控制和平均场博弈
  • 批准号:
    RGPIN-2019-05336
  • 财政年份:
    2022
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Mean Field Game Theory: A Potential Game Changer in the Decentralized Control of Complex Systems
平均场博弈论:复杂系统分散控制的潜在游戏规则改变者
  • 批准号:
    RGPIN-2016-06414
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Systems, Control and Mean Field Games on Networks
网络上的系统、控制和平均场博弈
  • 批准号:
    RGPIN-2019-05336
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Mean Field Game Theory: A Potential Game Changer in the Decentralized Control of Complex Systems
平均场博弈论:复杂系统分散控制的潜在游戏规则改变者
  • 批准号:
    RGPIN-2016-06414
  • 财政年份:
    2020
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Systems, Control and Mean Field Games on Networks
网络上的系统、控制和平均场博弈
  • 批准号:
    RGPIN-2019-05336
  • 财政年份:
    2019
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Mean Field Game Theory: A Potential Game Changer in the Decentralized Control of Complex Systems
平均场博弈论:复杂系统分散控制的潜在游戏规则改变者
  • 批准号:
    RGPIN-2016-06414
  • 财政年份:
    2019
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Mean Field Game Theory: A Potential Game Changer in the Decentralized Control of Complex Systems
平均场博弈论:复杂系统分散控制的潜在游戏规则改变者
  • 批准号:
    RGPIN-2016-06414
  • 财政年份:
    2018
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Mean Field, Distributed and Hybrid Control Systems
平均场、分布式和混合控制系统
  • 批准号:
    RGPIN-2014-04373
  • 财政年份:
    2018
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Mean Field Game Theory: A Potential Game Changer in the Decentralized Control of Complex Systems
平均场博弈论:复杂系统分散控制的潜在游戏规则改变者
  • 批准号:
    RGPIN-2016-06414
  • 财政年份:
    2017
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
CIF:Small:Minimum Mean Square Error Estimation and Control of Partially-Observed Boolean Dynamical Systems with Applications in Metagenomics
CIF:Small:部分观测布尔动力系统的最小均方误差估计和控制及其在宏基因组学中的应用
  • 批准号:
    1718924
  • 财政年份:
    2017
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了