Differentiable Programming for Computer Vision and Medical Image Analysis

计算机视觉和医学图像分析的可微分编程

基本信息

  • 批准号:
    RGPIN-2020-04139
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Deep learning has emerged as a strong method with empirical evidence to deliver accurate learning models for various computer vision applications. The success behind deep learning seems to be supervised learning that requires lots and lots of tagged image and video data. The requirement to have lots of training data with expert-created labels or tags pose a particularly challenging situation for medical image analysis applications, where scarcity of training data is common. Over the years, some methods, such as transfer learning have emerged to mitigate this issue. However, none of these techniques can adequately address lack of training data. The proposed research program will explore an alternative to the exiting techniques and will make use of prior and domain knowledge along with the power of deep learning to address the scarcity of labeled training data. As a technical solution, the program will rely on differentiable programming to mix traditional computer vision algorithms with deep learning methods, where the prior knowledge can be included in the traditional methods. Differentiable programming refers to gradient descent based optimization that relies on the differentiability of all the functions used in a data processing pipeline. However, most traditional computer vision methods include functions or processes that are not differentiable. Thus, the research further proposes to overcome this difficulty by using bypass neural networks to approximate non-differentiable functional modules. Using several use cases, the proposed research also demonstrates that the scope extends further beyond the lack of training data. For example, an end-to-end detection-tracking system for multi-object tracking can be cast into the proposed optimization framework. The research program will have ample opportunity to provide broad training to students in computer vision, medical image analysis, theoretical and statistical analysis of learning algorithms that fit well into Canada's commitment to artificial intelligence research. The proposed research can create a new and significant family of learning algorithms in computer vision and image analysis research.
深度学习已经成为一种强大的方法,具有经验证据,可以为各种计算机视觉应用提供准确的学习模型。深度学习背后的成功似乎是监督学习,它需要大量的标记图像和视频数据。对于医学图像分析应用来说,需要大量带有专家创建的标签或标记的训练数据是一个特别具有挑战性的情况,因为训练数据的稀缺是常见的。多年来,一些方法,如迁移学习已经出现,以减轻这个问题。然而,这些技术都不能充分解决缺乏训练数据的问题。拟议的研究计划将探索现有技术的替代方案,并将利用先验知识和领域知识沿着深度学习的力量来解决标记训练数据的稀缺性。作为一种技术解决方案,该计划将依靠可微编程将传统的计算机视觉算法与深度学习方法相结合,其中先验知识可以包含在传统方法中。可微编程是指基于梯度下降的优化,其依赖于数据处理流水线中使用的所有函数的可微性。然而,大多数传统的计算机视觉方法包括不可微分的功能或过程。因此,本研究进一步提出使用旁路神经网络来近似不可微的功能模块,以克服这个困难。使用几个用例,拟议的研究还表明,范围进一步扩展到缺乏训练数据。例如,用于多目标跟踪的端到端检测跟踪系统可以被投射到所提出的优化框架中。该研究计划将有充分的机会为学生提供计算机视觉,医学图像分析,学习算法的理论和统计分析方面的广泛培训,这些都非常适合加拿大对人工智能研究的承诺。所提出的研究可以在计算机视觉和图像分析研究中创建一个新的和重要的学习算法家族。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ray, Nilanjan其他文献

Fast Large-Scale Spectral Clustering via Explicit Feature Mapping
通过显式特征映射进行快速大规模谱聚类
  • DOI:
    10.1109/tcyb.2018.2794998
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    11.8
  • 作者:
    He, Li;Ray, Nilanjan;Zhang, Hong
  • 通讯作者:
    Zhang, Hong
Small-Object Detection in Remote Sensing Images with End-to-End Edge-Enhanced GAN and Object Detector Network
  • DOI:
    10.3390/rs12091432
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Rabbi, Jakaria;Ray, Nilanjan;Chao, Dennis
  • 通讯作者:
    Chao, Dennis
Cell tracking in microscopic video using matching and linking of bipartite graphs
Robust people counting using sparse representation and random projection
  • DOI:
    10.1016/j.patcog.2015.02.009
  • 发表时间:
    2015-10-01
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Foroughi, Homa;Ray, Nilanjan;Zhang, Hong
  • 通讯作者:
    Zhang, Hong

Ray, Nilanjan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ray, Nilanjan', 18)}}的其他基金

Differentiable Programming for Computer Vision and Medical Image Analysis
计算机视觉和医学图像分析的可微分编程
  • 批准号:
    RGPIN-2020-04139
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
AI-based document preprocessing for optical character recognition
基于人工智能的光学字符识别文档预处理
  • 批准号:
    567474-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alliance Grants
Differentiable Programming for Computer Vision and Medical Image Analysis
计算机视觉和医学图像分析的可微分编程
  • 批准号:
    RGPIN-2020-04139
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
AI-based Screening for Breast Cancer Treatment
基于人工智能的乳腺癌治疗筛查
  • 批准号:
    558274-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alliance Grants
Compressed Sensing for Computer Vision
计算机视觉的压缩感知
  • 批准号:
    RGPIN-2015-03796
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Real-time Document Registration with Deep Learning**
通过深度学习进行实时文档注册**
  • 批准号:
    536600-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Engage Grants Program
Compressed Sensing for Computer Vision
计算机视觉的压缩感知
  • 批准号:
    RGPIN-2015-03796
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Using deep learning to detect and track all modes in traffic videos
使用深度学习检测和跟踪交通视频中的所有模式
  • 批准号:
    508834-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Engage Grants Program
Compressed Sensing for Computer Vision
计算机视觉的压缩感知
  • 批准号:
    RGPIN-2015-03796
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Compressed Sensing for Computer Vision
计算机视觉的压缩感知
  • 批准号:
    RGPIN-2015-03796
  • 财政年份:
    2016
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Collaborative Research: Using Flow-Based Music Programming to Engage Children in Computer Science
协作研究:使用基于流程的音乐编程让孩子们参与计算机科学
  • 批准号:
    2241714
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Neural recycling and plasticity in computer programming expertise
计算机编程专业知识中的神经回收和可塑性
  • 批准号:
    2318685
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Engaging Blind and Visually Impaired Youth in Computer Science through Music Programming
合作研究:通过音乐编程让盲人和视障青少年参与计算机科学
  • 批准号:
    2300633
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Learning Analytics for Process-driven Computer Programming Assignments
流程驱动的计算机编程作业的学习分析
  • 批准号:
    2321304
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Flow-Based Music Programming to Engage Children in Computer Science
协作研究:使用基于流程的音乐编程让孩子们参与计算机科学
  • 批准号:
    2241715
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Engaging Blind and Visually Impaired Youth in Computer Science through Music Programming
合作研究:通过音乐编程让盲人和视障青少年参与计算机科学
  • 批准号:
    2300632
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Engaging Blind and Visually Impaired Youth in Computer Science through Music Programming
合作研究:通过音乐编程让盲人和视障青少年参与计算机科学
  • 批准号:
    2300631
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
How can teachers use video games to support primary students to develop their understanding of programming concepts when studying computer science?
教师如何利用电子游戏帮助小学生在学习计算机科学时加深对编程概念的理解?
  • 批准号:
    2887210
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Studentship
An Educational Tool for Teaching and Learning Concurrent Computer Programming Techniques
用于教授和学习并行计算机编程技术的教育工具
  • 批准号:
    2215359
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
An Educational Tool for Teaching and Learning Concurrent Computer Programming Techniques
用于教授和学习并行计算机编程技术的教育工具
  • 批准号:
    2215193
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了