Automating Matrix Code Optimization for Performance and Portability
自动优化矩阵代码以提高性能和可移植性
基本信息
- 批准号:RGPIN-2019-06516
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The scalability and performance of many large-scale scientific and data analytics codes for applications in machine learning and physics simulations depend heavily on the optimizations and parallel implementations used to operate on large matrices. The emergence of new applications with stupendously large data has rendered the classical approaches to optimizing matrix computations, such as using specialized libraries and classical mathematical methods, inadequate in many situations. Mathematical methods are also often inherently unscalable and introduce data dependencies in matrix computations. Hand-written specialized libraries apply limited optimizations to maintain generality, must be manually ported to new architectures, and may stagnate with architectural advances. Also, complex dependence structures in matrix algorithms limit the optimizations that a compiler can apply to these codes.
The project takes an integrated approach that combines efforts in mathematical reformulation, high-performance algorithm design, and compiler and system design to build high-performance and scalable software frameworks for large-scale simulations. For sparse matrix computations, we plan to analyze the non-zero patterns, i.e. symbolic information, along with the numerical algorithm so that our framework can detect computation patterns in the sparse matrix methods. As a result, our framework will automatically generate high-performance sparse matrix codes by fully decoupling the symbolic analysis from numeric computation. For big data applications that manipulate large dense matrix inputs, our framework will support approximate matrix computations. Approximate matrix algorithms reduce the computation and storage complexity of matrix computations with the objective of beating deterministic algorithms in terms of accuracy, speed, and robustness. We will also formulate scalable matrix algorithms for large optimization models used in “big data” machine learning and build a cluster-computing engine to be used for distributed implementations of these algorithms. As evidenced by interest from our industrial and academic collaborators, we believe this research will be broadly used by domain experts to replace hand-optimized library codes and significantly improve the performance of matrix computations in large-scale simulations.
许多用于机器学习和物理模拟应用的大规模科学和数据分析代码的可扩展性和性能在很大程度上取决于用于对大型矩阵进行操作的优化和并行实现。大量数据的新应用程序的出现使得优化矩阵计算的经典方法(例如使用专门的库和经典的数学方法)在许多情况下都不适用。数学方法通常也是固有的不可扩展性,并在矩阵计算中引入数据依赖性。手工编写的专用库应用有限的优化来保持通用性,必须手动移植到新的体系结构,并且可能随着体系结构的发展而停滞不前。此外,矩阵算法中的复杂依赖结构限制了编译器可以应用于这些代码的优化。
该项目采用综合方法,结合数学重构,高性能算法设计以及编译器和系统设计的努力,为大规模模拟构建高性能和可扩展的软件框架。对于稀疏矩阵计算,我们计划分析非零模式,即符号信息,沿着数值算法,以便我们的框架可以检测稀疏矩阵方法中的计算模式。因此,我们的框架将自动生成高性能的稀疏矩阵代码完全解耦的符号分析从数值计算。对于处理大型密集矩阵输入的大数据应用程序,我们的框架将支持近似矩阵计算。近似矩阵算法降低了矩阵计算的计算和存储复杂度,其目标是在准确性、速度和鲁棒性方面击败确定性算法。我们还将制定用于“大数据”机器学习的大型优化模型的可扩展矩阵算法,并构建一个集群计算引擎,用于这些算法的分布式实现。正如我们的工业和学术合作者的兴趣所证明的那样,我们相信这项研究将被领域专家广泛用于取代手动优化的库代码,并显着提高大规模模拟中矩阵计算的性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MehriDehnavi, Maryam其他文献
MehriDehnavi, Maryam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MehriDehnavi, Maryam', 18)}}的其他基金
Parallel and Distributed Computing
并行和分布式计算
- 批准号:
CRC-2019-00292 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
Automating Matrix Code Optimization for Performance and Portability
自动优化矩阵代码以提高性能和可移植性
- 批准号:
RGPIN-2019-06516 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Automating Matrix Code Optimization for Performance and Portability
自动优化矩阵代码以提高性能和可移植性
- 批准号:
RGPIN-2019-06516 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Parallel And Distributed Computing
并行和分布式计算
- 批准号:
CRC-2019-00292 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
Parallel and Distributed Computing
并行和分布式计算
- 批准号:
CRC-2019-00292 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
Automating Matrix Code Optimization for Performance and Portability
自动优化矩阵代码以提高性能和可移植性
- 批准号:
DGECR-2019-00303 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Launch Supplement
Parallel and Distributed Computing
并行和分布式计算
- 批准号:
CRC-2019-00292 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
Automating Matrix Code Optimization for Performance and Portability
自动优化矩阵代码以提高性能和可移植性
- 批准号:
RGPIN-2019-06516 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Communication Avoiding Algorithms for Extreme-scale Computing
超大规模计算的通信避免算法
- 批准号:
421658-2012 - 财政年份:2014
- 资助金额:
$ 2.4万 - 项目类别:
Postdoctoral Fellowships
Communication Avoiding Algorithms for Extreme-scale Computing
超大规模计算的通信避免算法
- 批准号:
421658-2012 - 财政年份:2013
- 资助金额:
$ 2.4万 - 项目类别:
Postdoctoral Fellowships
相似国自然基金
基于Matrix2000加速器的个性小数据在线挖掘
- 批准号:2020JJ4669
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
多模强激光场R-MATRIX-FLOQUET理论
- 批准号:19574020
- 批准年份:1995
- 资助金额:7.5 万元
- 项目类别:面上项目
相似海外基金
Automating Matrix Code Optimization for Performance and Portability
自动优化矩阵代码以提高性能和可移植性
- 批准号:
RGPIN-2019-06516 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Automating Matrix Code Optimization for Performance and Portability
自动优化矩阵代码以提高性能和可移植性
- 批准号:
RGPIN-2019-06516 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Automating Matrix Code Optimization for Performance and Portability
自动优化矩阵代码以提高性能和可移植性
- 批准号:
DGECR-2019-00303 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Launch Supplement
Automating Matrix Code Optimization for Performance and Portability
自动优化矩阵代码以提高性能和可移植性
- 批准号:
RGPIN-2019-06516 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Mechanical strain and BMP-stimulation instruct the extracellular matrix to control stem cell fate decisions: an age-dependent matrix code?
机械应变和 BMP 刺激指示细胞外基质控制干细胞命运决定:年龄依赖性基质代码?
- 批准号:
259402103 - 财政年份:2014
- 资助金额:
$ 2.4万 - 项目类别:
Research Units
MMDx: A rapid multiplexed matrix code diagnostic for real time epidemiology
MMDx:用于实时流行病学的快速多路复用矩阵代码诊断
- 批准号:
8915035 - 财政年份:2012
- 资助金额:
$ 2.4万 - 项目类别:
Matrix-Product-State Open Source Code and the Many Body Physics of Ultracold Molecules
矩阵积态开源代码和超冷分子的多体物理学
- 批准号:
1207881 - 财政年份:2012
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
MMDx: A rapid multiplexed matrix code diagnostic for real time epidemiology
MMDx:用于实时流行病学的快速多路复用矩阵代码诊断
- 批准号:
8467676 - 财政年份:2012
- 资助金额:
$ 2.4万 - 项目类别:
MMDx: A rapid multiplexed matrix code diagnostic for real time epidemiology
MMDx:用于实时流行病学的快速多路复用矩阵代码诊断
- 批准号:
8901539 - 财政年份:2012
- 资助金额:
$ 2.4万 - 项目类别:
MMDx: A rapid multiplexed matrix code diagnostic for real time epidemiology
MMDx:用于实时流行病学的快速多路复用矩阵代码诊断
- 批准号:
8301236 - 财政年份:2012
- 资助金额:
$ 2.4万 - 项目类别: