Theoretical Developments and Applications of Conservative Discretizations

保守离散化的理论发展与应用

基本信息

  • 批准号:
    RGPIN-2019-07286
  • 负责人:
  • 金额:
    $ 1.17万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Many important dynamical systems in physical sciences and engineering possess important geometric structures, such as invariant quantities. Such quantities must stay constant as the state of the system evolves and they are essential for understanding the long-term behaviour of these systems. In order to study these complex dynamical systems, numerical methods are often used to approximate the state of the system on computer simulations over long periods of time. Unfortunately, traditional numerical methods are not conservative, as they do not preserve invariants which can lead to large deviations in their approximations. While general conservative methods exist, they can exhibit instabilities over long-term simulations or have difficulties with implementation for large dynamical systems with multiple invariants. A new class of conservative methods known as the Discrete Multiplier Method (DMM) was recently developed which can avoid these difficulties. This research program seeks to explore two parallel objectives: 1) Theoretical developments of DMM, and 2) Applications of DMM. In the first objective, extensions to the theory of DMM will be investigated. Specifically, we will develop new conservative methods for time-dependent partial differential equations. In particular, wave and dispersive phenomena are modelled by such equations in both space and time and they interact in a nontrivial way so that their invariants are preserved. By applying traditional numerical methods in spatial approximation and DMM in temporal approximation, we will devise new conservative methods to study these time-dependent problems. Moreover, we will study the connections of DMM with existing general conservative methods and compare their stability properties. In the second objective, we will explore novel applications of DMM in physical sciences and engineering. Specifically, we intend to develop extensions of DMM to simulate flows on manifolds. Such flows are important in many areas as they appear in classical mechanics, control theory, image processing, neural networks and optimizations. Using the DMM approach, new conservative methods will be developed to study this large class of important problems. In addition, we will apply DMM to long-term simulations in molecular dynamics. While specialized numerical methods have been developed for molecular simulations, they do not preserve the energy, which is an important invariant of these systems. Instead, we will devise new conservative methods for molecular dynamics and compare the statistics of different molecular models. This work will lead to a new class of numerical methods with favourable long-term properties for computational science and will have a direct impact on a variety of important problems from physical sciences and engineering.
物理科学和工程中许多重要的动力系统都具有重要的几何结构,如不变量。随着系统状态的发展,这些量必须保持恒定,它们对于理解这些系统的长期行为至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wan, Andy其他文献

Wan, Andy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wan, Andy', 18)}}的其他基金

Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
  • 批准号:
    RGPIN-2019-07286
  • 财政年份:
    2022
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
  • 批准号:
    RGPIN-2019-07286
  • 财政年份:
    2021
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
  • 批准号:
    DGECR-2019-00467
  • 财政年份:
    2019
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Launch Supplement
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
  • 批准号:
    RGPIN-2019-07286
  • 财政年份:
    2019
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
  • 批准号:
    RGPIN-2019-07286
  • 财政年份:
    2022
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
  • 批准号:
    RGPIN-2019-07286
  • 财政年份:
    2021
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
  • 批准号:
    DGECR-2019-00467
  • 财政年份:
    2019
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Launch Supplement
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
  • 批准号:
    RGPIN-2019-07286
  • 财政年份:
    2019
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Homogenized inelastic constitutive equation of open-porous bodies: theoretical developments and applications
开孔体均匀非弹性本构方程:理论发展与应用
  • 批准号:
    24360045
  • 财政年份:
    2012
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Plenoptic Image Acquisition and Projection: Theoretical Developments and Applications
全光图像采集和投影:理论发展和应用
  • 批准号:
    212380566
  • 财政年份:
    2012
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Independent Junior Research Groups
Random Matrices in Multivariate Statistics: Theoretical Developments and Applications
多元统计中的随机矩阵:理论发展和应用
  • 批准号:
    0605169
  • 财政年份:
    2006
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Standard Grant
Theoretical problems and applications in recent developments of Quantum chromodynamics
量子色动力学最新发展的理论问题及应用
  • 批准号:
    5028-1996
  • 财政年份:
    1999
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Theoretical problems and applications in recent developments of Quantum chromodynamics
量子色动力学最新发展的理论问题及应用
  • 批准号:
    5028-1996
  • 财政年份:
    1998
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Theoretical problems and applications in recent developments of Quantum chromodynamics
量子色动力学最新发展的理论问题及应用
  • 批准号:
    5028-1996
  • 财政年份:
    1997
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Subatomic Physics Envelope - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了