Algorithms in computational geometry and geometric graphs
计算几何和几何图的算法
基本信息
- 批准号:RGPIN-2020-03959
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research is in design and analysis of algorithms, specifically for problems involving geometry and graphs.
Currently, I focus on reconfiguration of geometric structures and graphs: How can one structure be changed to another, either through continuous motion or through discrete changes? Examples in popular culture include Rubik's cubes and transformers; in mathematics, the topic has a vast and deep history, for example knot theory, and mechanical linkages.
Reconfiguration can often be accomplished via discrete steps. The questions I propose answering are ones of: existence (can an initial structure be reconfigured to a target structure); distance (how many steps are needed for reconfiguration); and efficiency (is there an efficient algorithm to test existence or find the distance). These problems can be modelled as connectivity and shortest path problems in an exponentially large “reconfiguration graph'' where a vertex represents a configuration and an edge represents a reconfiguration step. I propose to study the structure of such reconfiguration graphs, building on previous work with PhD students on reconfiguration of triangulations of a point set in the plane. Triangulations of a point set are heavily used in applications such as meshing, and the basic reconfiguration step, a “flip”, is well-studied. In the process of studying flips in the edge-labelled setting, we discovered new topological properties of the reconfiguration complex, an enhancement of the reconfiguration graph. I will extend this to other settings, with the goal of furthering our understanding of the structure of reconfiguration graphs.
“Morphing” is one kind of reconfiguration, and I will continue to work on problems of morphing graph drawings. Given two planar drawings of the same graph with points for vertices, and straight line segments for edges, the goal is to move continuously from the first drawing to the second, remaining planar throughout the motion. This problem has many applications in visualization and animation. We have developed a theoretically satisfactory algorithm to find a piece-wise-linear morph but many practical issues such as preventing vertices from coming too close to each other remain open.
My work on reconfiguration in a more geometric setting focuses on unfolding polyhedra, a problem with applications in manufacturing 3D shapes out of metal, cardboard or plastic. One famous open question is whether we can cut some edges of any convex polyhedron to give a non-overlapping “net” in the plane. In practical applications we may cut across faces, and nets are known to exist for this relaxation. However, some nets are better than others I propose to find efficient algorithms to solve associated optimization problems of minimizing the length of the cuts or the size of the minimum disc enclosing the net, both of which are relevant in applications.
我的研究方向是算法的设计和分析,特别是涉及几何和图形的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lubiw, Anna其他文献
Face flips in origami tessellations
折纸镶嵌中的脸部翻转
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0.3
- 作者:
Akitaya, Hugo A;Dujmović, Vida;Eppstein, David;Hull, Thomas C;Jain, Kshitij;Lubiw, Anna - 通讯作者:
Lubiw, Anna
Recognition and Drawing of Stick Graphs
棒图的识别与绘制
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
De Luca, Felice;Hossain, Iqbal;Kobourov, Stephen;Lubiw, Anna;Mondal, Debajyoti - 通讯作者:
Mondal, Debajyoti
Lubiw, Anna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lubiw, Anna', 18)}}的其他基金
Algorithms in computational geometry and geometric graphs
计算几何和几何图的算法
- 批准号:
RGPIN-2020-03959 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Algorithms in computational geometry and geometric graphs
计算几何和几何图的算法
- 批准号:
RGPIN-2020-03959 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Algorithms in computational geometry and graph drawing
计算几何和绘图中的算法
- 批准号:
RGPIN-2015-06424 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Algorithms in computational geometry and graph drawing
计算几何和绘图中的算法
- 批准号:
RGPIN-2015-06424 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Algorithms in computational geometry and graph drawing
计算几何和绘图中的算法
- 批准号:
RGPIN-2015-06424 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Algorithms in computational geometry and graph drawing
计算几何和绘图中的算法
- 批准号:
RGPIN-2015-06424 - 财政年份:2016
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Algorithms in computational geometry and graph drawing
计算几何和绘图中的算法
- 批准号:
RGPIN-2015-06424 - 财政年份:2015
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Algorithms in computational geometry and graph drawing
计算几何和绘图中的算法
- 批准号:
36704-2010 - 财政年份:2014
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Algorithms in computational geometry and graph drawing
计算几何和绘图中的算法
- 批准号:
36704-2010 - 财政年份:2013
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Algorithms in computational geometry and graph drawing
计算几何和绘图中的算法
- 批准号:
36704-2010 - 财政年份:2012
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
物体运动对流场扰动的数学模型研究
- 批准号:51072241
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Algorithms in computational geometry and geometric graphs
计算几何和几何图的算法
- 批准号:
RGPIN-2020-03959 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Design and analysis of algorithms for problems in computational geometry
计算几何问题的算法设计与分析
- 批准号:
RGPIN-2021-03823 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Geometric structures guided learning model and algorithms for bulk RNAseq data analysis
用于批量 RNAseq 数据分析的几何结构引导学习模型和算法
- 批准号:
10710214 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Design and analysis of algorithms for problems in computational geometry
计算几何问题的算法设计与分析
- 批准号:
RGPIN-2021-03823 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Algorithms in computational geometry and geometric graphs
计算几何和几何图的算法
- 批准号:
RGPIN-2020-03959 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Design and Analysis of Algorithms for Problems in Computational Geometry
计算几何问题的算法设计与分析
- 批准号:
RGPIN-2016-06229 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
DGECR-2019-00092 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Launch Supplement