Estimating Optimum Staffing Levels via Predicting Workload and Resources Requirements for Engineering and Construction Firms
通过预测工程和建筑公司的工作量和资源需求来估计最佳人员配置水平
基本信息
- 批准号:RGPIN-2020-03955
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nearly all Engineering and Construction firms rely on continuous supply of projects to generate their revenue and stay in business. These companies plan and execute multiple projects simultaneously utilizing one common pool of resources. In order to estimate staffing levels efficiently, firms have to predict expected workload and amounts of resources required to perform this expected workload. Both these previously mentioned tasks have high levels of uncertainty.
Although, there is a large amount of academic studies that addressed the problem of resource allocation, leveling and optimization, most of theses studies focused on studying projects independently from each other, not on managing multiple projects using one common pool of resources. Hence, the provided solutions cannot be applied to real life complex situations.
The long-term goal of this research program is to develop an integrated framework to estimate optimum staffing levels via predicting workload and resources requirements for Engineering and Construction firms. The research will be performed by four PhD students as follows:
First student will investigate various options of smart data acquisition of resources utilization data at the work package level. The student will focus on utilization of parametric features included in Building Information Modeling (BIM) to store the data.
Second student will work on predicting future workload using System Dynamics (SD). The approach will focus on capturing the impact of internal and external factors affecting the probability of wining new projects by an organization.
Since recourse utilization data is time-dependent, the third student will implement Sequential Pattern Analysis (SPA) data analytics technique to predict resource requirements for upcoming projects.
Fourth student will develop Knowledge-Based Decision Support Systems (KBDSS) bases on multiple-objectives optimization techniques to estimate future resource levels.
This research program will introduce new algorithms and techniques that have not been widely used in construction academic research. The quantitative approach of this research will investigate innovative methods to combine various algorithms in one integrated framework to achieve optimum solutions. The program will bring new insights by longitudinally exploring data relating to construction and comprehensively considering data collected from multiple projects. The research program is also expected to benefit the industry by introducing a practical solution that can be implemented to address one of their major challenges. With the vast amount of hours spent in construction projects and, multi-billion dollar investments, improvements by this research will have significant benefit to industry and society.
几乎所有的工程和建筑公司都依赖于项目的持续供应来产生收入并保持业务。这些公司利用一个共同的资源池同时计划和执行多个项目。为了有效地估计人员配备水平,公司必须预测预期的工作量和执行预期工作量所需的资源量。前面提到的这两项任务都具有很高的不确定性。
虽然,有大量的学术研究,解决了资源分配,均衡和优化的问题,大多数这些研究集中在研究项目相互独立,而不是使用一个共同的资源池管理多个项目。因此,所提供的解决方案不能应用于真实的生活复杂情况。
该研究计划的长期目标是开发一个综合框架,通过预测工程和建筑公司的工作量和资源需求来估计最佳人员配置水平。该研究将由四名博士生进行,具体如下:
首先,学生将研究在工作包级别的资源利用数据的智能数据采集的各种选项。学生将专注于利用建筑信息建模(BIM)中包含的参数化特征来存储数据。
第二个学生将使用系统动力学(SD)预测未来的工作量。该方法将侧重于捕捉影响一个组织赢得新项目的可能性的内部和外部因素的影响。
由于资源利用数据是时间依赖的,第三个学生将实施序列模式分析(SPA)数据分析技术,以预测即将到来的项目的资源需求。
第四,学生将开发基于知识的决策支持系统(KBDSS)基于多目标优化技术,以估计未来的资源水平。
该研究计划将介绍在建筑学术研究中尚未广泛使用的新算法和技术。本研究的定量方法将探讨创新的方法,将联合收割机的各种算法在一个综合框架,以实现最佳的解决方案。该计划将通过纵向探索与建筑相关的数据并综合考虑从多个项目收集的数据来带来新的见解。该研究计划还有望通过引入一种实用的解决方案来解决其主要挑战之一,从而使该行业受益。由于在建筑项目上花费了大量的时间和数十亿美元的投资,这项研究的改进将对工业和社会产生重大利益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hammad, Ahmed其他文献
Prognostic Value of Red Blood Cell Distribution Width (RDW) in the Recurrence of Hepatocellular Carcinoma Following Curative Resection.
- DOI:
10.2147/jhc.s380243 - 发表时间:
2022 - 期刊:
- 影响因子:4.1
- 作者:
Golriz, Mohammad;Ramouz, Ali;Ali-Hasan-Al-Saegh, Sadeq;Shafiei, Saeed;Aminizadeh, Ehsan;Hammad, Ahmed;Mieth, Markus;Rupp, Christian;Springfeld, Christoph;Hoffmann, Katrin;Buechler, Markus;Mehrabi, Arianeb - 通讯作者:
Mehrabi, Arianeb
Identification of potential biomarkers with colorectal cancer based on bioinformatics analysis and machine learning
- DOI:
10.3934/mbe.2021443 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:2.6
- 作者:
Hammad, Ahmed;Elshaer, Mohamed;Tang, Xiuwen - 通讯作者:
Tang, Xiuwen
A Hybrid Multi-Criteria Decision Support System for Selecting the Most Sustainable Structural Material for a Multistory Building Construction
- DOI:
10.3390/su15043128 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:3.9
- 作者:
Alam Bhuiyan, Mohammad Masfiqul;Hammad, Ahmed - 通讯作者:
Hammad, Ahmed
Identification of novel Nrf2 target genes as prognostic biomarkers in colitis-associated colorectal cancer in Nrf2-deficient mice
鉴定新的 Nrf2 靶基因作为 Nrf2 缺陷小鼠结肠炎相关结直肠癌的预后生物标志物
- DOI:
10.1016/j.lfs.2019.116968 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:6.1
- 作者:
Hammad, Ahmed;Zheng, Zhao-Hong;Tang, Xiuwen - 通讯作者:
Tang, Xiuwen
Impact of sarcopenic overweight on the outcomes after living donor liver transplantation
- DOI:
10.21037/hbsn.2017.02.02 - 发表时间:
2017-12-01 - 期刊:
- 影响因子:8
- 作者:
Hammad, Ahmed;Kaido, Toshimi;Uemoto, Shinji - 通讯作者:
Uemoto, Shinji
Hammad, Ahmed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hammad, Ahmed', 18)}}的其他基金
Estimating Optimum Staffing Levels via Predicting Workload and Resources Requirements for Engineering and Construction Firms
通过预测工程和建筑公司的工作量和资源需求来估计最佳人员配置水平
- 批准号:
DGECR-2020-00375 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Launch Supplement
相似海外基金
Development of a physiologically based model for predicting the optimum harvest period for rice
开发基于生理的模型来预测水稻的最佳收获期
- 批准号:
23K05198 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Techno-economic assessment of an onboard carbon capture utilisation and sequestration (CCUS) system for LNG-powered vessels along an optimum blue LNG corridor to reduce port GHG emissions in Singapore
为沿最佳蓝色液化天然气走廊的液化天然气动力船舶设计船上碳捕集利用和封存 (CCUS) 系统并进行技术经济评估,以减少新加坡港口温室气体排放
- 批准号:
10078680 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Collaborative R&D
Optimum design of reactive transport fields in fuel cells based on combined measurements using laser and X-ray and entropy mapping
基于激光、X 射线和熵映射组合测量的燃料电池中反应输运场的优化设计
- 批准号:
23K03692 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and optimum design of low NOx technology for igniters for scramjet combustors
超燃冲压发动机燃烧室点火器低NOx技术开发及优化设计
- 批准号:
23K13496 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
OPTIMUM OB-TXA: Optimal TIMing, route and dose of tranexamic acid prior to UMbilical cord clamp for postpartum hemorrhage prevention
最佳 OB-TXA:脐带钳夹前氨甲环酸预防产后出血的最佳时间、途径和剂量
- 批准号:
11000587 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Optimum design of variable vortex-induced vibration electric power generator with self-tunable vibration property
具有自调谐振动特性的变涡激振动发电机优化设计
- 批准号:
23K03639 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimized Predictive Treatment In Medications for Unipolar Major Depression (OPTIMUM-D)
单相重度抑郁症药物的优化预测治疗 (OPTIMUM-D)
- 批准号:
469292 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Operating Grants
Estimating Optimum Staffing Levels via Predicting Workload and Resources Requirements for Engineering and Construction Firms
通过预测工程和建筑公司的工作量和资源需求来估计最佳人员配置水平
- 批准号:
RGPIN-2020-03955 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Investigation of optimum arrangement of small-vertical-axis-wind-turbine clusters with interaction between the pairs and trios of turbines
小型垂直轴风力发电机组优化布置的研究
- 批准号:
22K12456 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reconciling US Southwest Hydroclimate Model Projections and Geologic Data: Constraints from the Miocene Climate Optimum
协调美国西南水文气候模型预测和地质数据:中新世气候最佳值的限制
- 批准号:
2202916 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant














{{item.name}}会员




