Combinatorics of Words and Number Theory

单词组合学和数论

基本信息

  • 批准号:
    RGPIN-2020-04685
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

One of the classical problems of mathematics is to find solutions to Diophantine Equations (named after Diophantus of Alexandria, a Greek mathematician of the third century AD). More precisely, only integral solutions are considered in this context (unlike e.g. x^2=2, whose solution is the square root of 2, a non-integer). One famous such equation is the equation x^2+y^2=z^2, which recalls the Pythagorean theorem, and whose infinitely many integral solutions (e.g. x=3,y=4,z=5) are all known. But an even more famous example is the equation x^n+y^n=z^n, appearing in the so-called "Fermat's last theorem". The fact that this equation has no solutions when the exponent n is at least equal to 3, is a result proved by Andrew Wiles in the 1990's. My program of research is based on a new original approach to the Markoff Diophantine equation x^2+y^2+z^2=3xyz. Markoff was a brilliant Russian number-theorist who studied this equation (when he was 20), around 1880. He became even more famous later, through the theory of Markov processes. He himself wrote his name with two 'f', in his first, French-written, articles. It turns out that one may completely solve the Markoff equation, using combinatorics on words, in a manner that sheds new light on many aspects of the question. Combinatorics on words is a rather new branch of mathematics, with links to automata theory, algebra and number theory, and also linguistics. The link with the Markoff equation exploits a certain construction on words, called palindromisation: by means of a certain algorithm, devised by Aldo de Luca, each word is turned into a palindrome. This construction, after some matrix computations, gives all triples which are solutions of the Markoff equation. I recently obtained this new solution of the equation in collaboration with two student of mine (Abram, Lapointe). My research program will explore many aspects of new links between combinatorics of words and number theory.
丢番图方程(以公元三世纪希腊数学家亚历山大的丢番图命名)的解是数学中的一个经典问题。更准确地说,在这种情况下只考虑积分解(不像x^2=2,其解是2的平方根,一个非整数)。其中一个著名的方程是方程x^2+y^2=z^2,它让人想起毕达哥拉斯定理,它的无穷多个积分解(例如x=3,y=4,z=5)都是已知的。但一个更著名的例子是方程x^n+y^n=z^n,出现在所谓的“费马大定理”中。当n的指数至少等于3时,这个方程没有解,这是安德鲁·怀尔斯在20世纪90年代证明的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Reutenauer, Christophe其他文献

Friezes
  • DOI:
    10.1016/j.aim.2010.05.019
  • 发表时间:
    2010-12-20
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Assem, Ibrahim;Reutenauer, Christophe;Smith, David
  • 通讯作者:
    Smith, David
Golden ratio and phyllotaxis, a clear mathematical link
  • DOI:
    10.1007/s00285-018-1265-3
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Bergeron, Francois;Reutenauer, Christophe
  • 通讯作者:
    Reutenauer, Christophe
A bijection between words and multisets of necklaces
  • DOI:
    10.1016/j.ejc.2012.03.016
  • 发表时间:
    2012-10-01
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Gessel, Ira M.;Restivo, Antonio;Reutenauer, Christophe
  • 通讯作者:
    Reutenauer, Christophe

Reutenauer, Christophe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Reutenauer, Christophe', 18)}}的其他基金

Combinatorics of Words and Number Theory
单词组合学和数论
  • 批准号:
    RGPIN-2020-04685
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorics of Words and Number Theory
单词组合学和数论
  • 批准号:
    RGPIN-2020-04685
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Words and noncommutative algebraic combinatorics
单词和非交换代数组合
  • 批准号:
    RGPIN-2015-06140
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Words and noncommutative algebraic combinatorics
单词和非交换代数组合
  • 批准号:
    RGPIN-2015-06140
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Words and noncommutative algebraic combinatorics
单词和非交换代数组合
  • 批准号:
    RGPIN-2015-06140
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Words and noncommutative algebraic combinatorics
单词和非交换代数组合
  • 批准号:
    RGPIN-2015-06140
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Words and noncommutative algebraic combinatorics
单词和非交换代数组合
  • 批准号:
    RGPIN-2015-06140
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Chaire de recherche du Canada en algèbre, combinatoire et informatique mathématique
加拿大代数、组合和信息数学研究主席
  • 批准号:
    1000206364-2007
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Canada Research Chairs
Words, tiling and noncommutative structures
单词、平铺和非交换结构
  • 批准号:
    42551-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Chaire de recherche du Canada en algèbre, combinatoire et informatique mathématique
加拿大代数、组合和信息数学研究主席
  • 批准号:
    1000206364-2007
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Canada Research Chairs

相似海外基金

Combinatorics of Words and Number Theory
单词组合学和数论
  • 批准号:
    RGPIN-2020-04685
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorics of Words and Number Theory
单词组合学和数论
  • 批准号:
    RGPIN-2020-04685
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Descriptional complexity, combinatorics on words, formal languages and number theory
描述复杂性、单词组合学、形式语言和数论
  • 批准号:
    105829-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Descriptional complexity, combinatorics on words, formal languages and number theory
描述复杂性、单词组合学、形式语言和数论
  • 批准号:
    105829-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Descriptional complexity, combinatorics on words, formal languages and number theory
描述复杂性、单词组合学、形式语言和数论
  • 批准号:
    105829-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Descriptional complexity, combinatorics on words, formal languages and number theory
描述复杂性、单词组合学、形式语言和数论
  • 批准号:
    105829-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Descriptional complexity, combinatorics on words, formal languages and number theory
描述复杂性、单词组合学、形式语言和数论
  • 批准号:
    105829-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Descriptional complexity, combinatorics on words, and number theory
描述复杂性、单词组合学和数论
  • 批准号:
    105829-2003
  • 财政年份:
    2007
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Descriptional complexity, combinatorics on words, and number theory
描述复杂性、单词组合学和数论
  • 批准号:
    105829-2003
  • 财政年份:
    2006
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Descriptional complexity, combinatorics on words, and number theory
描述复杂性、单词组合学和数论
  • 批准号:
    105829-2003
  • 财政年份:
    2005
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了