Automatic discovery and annotation of the impact of chemical modifications in RNA on structure and binding

自动发现和注释 RNA 化学修饰对结构和结合的影响

基本信息

  • 批准号:
    RGPIN-2020-05795
  • 负责人:
  • 金额:
    $ 2.7万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

A bio-molecule present in every living organism is Ribonucleic Acid (RNA). Like Desoxyribonucleic acid (DNA) they are formed of four different components, called bases. They share the first three called Adenine (A), Cytosine (C) and Guanine (G). The fourth is unique in RNA and called Uracil (U). They fulfill many essential roles, as transferring information, making proteins, and regulating genes. To do those things, they adopt complex three-dimensional structures. In the past decades, sequencing technologies has given us a lot of information about the ensemble of RNA sequences. Many complex experimental techniques have also allowed to determine some three-dimensional structures with extreme precision. Nonetheless, obtaining the structure is much more challenging than the sequence. Computational methods have been used to understand the relationship between the sequence, the structure, and ultimately their function. Those tools have proven to be invaluable to understand the massive amount of sequence data that has been produced and allowed to detect diseases by errors in the sequence, even to design new drugs by creating sequences that adopt specific structures with a desirable function. We now know that the sequence is not enough to fully understand the function of RNA. In both cases epigenetic factors, exterior to the sequence, manifest themselves as chemical modification on the bases. It has been recently discovered that they are essential for RNA to perform as they can have a strong effect on their structure. While over 190 modifications are observed in crystal structure, only a handful have been studied. Their number is steadily growing since just this year, the first sequencing technique to massively detect chemical modifications in sequences was designed, and promises a flood of new data. This proposal aims to create new computational methods to understand the impact of the chemical modification on their structure and function. It is divided in two main themes. The first one will study known structures that contain chemically modified RNAs. We will design a new ontology to describe the new interactions involving those chemically modified base pairs. We will in parallel create new algorithms to identify conserved structural modules, especially those with interactions, to understand how the global conformation of the RNA is impacted. Those will be used to better predict global conformation, and design RNAs with novel desirable functions. The second theme will look at the sequences. Although they often are without a known structures, they contain a lot of information that can be extracted from their large numbers. We will create bioinformatic methods to extract from evolutionary information connected networks of positions in the sequences that have co-evolved together, hinting at their functional necessity. Those will be used to understand and predict the role of chemical modifications in binding to other molecules.
存在于每个生物体中的生物分子是核糖核酸(RNA)。像脱氧核糖核酸(DNA)一样,它们由四种不同的成分组成,称为碱基。它们共享前三个称为腺嘌呤(A),胞嘧啶(C)和鸟嘌呤(G)。第四种是RNA中独特的,称为尿嘧啶(U)。它们发挥着许多重要作用,如传递信息,制造蛋白质和调节基因。为了做到这些,它们采用了复杂的三维结构。在过去的几十年里,测序技术为我们提供了大量关于RNA序列整体的信息。许多复杂的实验技术也允许以极高的精度确定一些三维结构。然而,获得结构比序列更具挑战性。计算方法已被用于理解序列、结构和最终它们的功能之间的关系。这些工具已被证明是非常宝贵的,可以理解已经产生的大量序列数据,并允许通过序列中的错误来检测疾病,甚至通过创建具有所需功能的特定结构的序列来设计新药。 我们现在知道,序列不足以完全理解RNA的功能。在这两种情况下,表观遗传因素,外部的序列,表现为化学修饰的基地。最近发现,它们对RNA的运作至关重要,因为它们可以对其结构产生强烈的影响。 虽然在晶体结构中观察到超过190种修饰,但只有少数被研究过。它们的数量正在稳步增长,因为就在今年,第一个大规模检测序列中化学修饰的测序技术被设计出来,并承诺提供大量新数据。 该提案旨在创建新的计算方法,以了解化学修饰对其结构和功能的影响。报告分为两个主题。第一个将研究含有化学修饰的RNA的已知结构。我们将设计一个新的本体来描述涉及这些化学修饰的碱基对的新的相互作用。我们将同时创建新的算法来识别保守的结构模块,特别是那些具有相互作用的模块,以了解RNA的全局构象如何受到影响。这些将用于更好地预测全局构象,并设计具有新功能的RNA。第二个主题将着眼于序列。虽然它们通常没有已知的结构,但它们包含了大量可以从其大量数据中提取的信息。我们将创建生物信息学方法,从进化信息中提取共同进化的序列中的位置连接网络,暗示它们的功能必要性。这些将用于理解和预测化学修饰在与其他分子结合中的作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Reinharz, Vladimir其他文献

incaRNAfbinv: a web server for the fragment-based design of RNA sequences
  • DOI:
    10.1093/nar/gkw440
  • 发表时间:
    2016-07-08
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Retwitzer, Matan Drory;Reinharz, Vladimir;Barash, Danny
  • 通讯作者:
    Barash, Danny
Modeling and Predicting RNA Three-Dimensional Structures
  • DOI:
    10.1007/978-1-4939-2291-8_6
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Waldispuehl, Jerome;Reinharz, Vladimir
  • 通讯作者:
    Reinharz, Vladimir
Towards 3D structure prediction of large RNA molecules: an integer programming framework to insert local 3D motifs in RNA secondary structure
  • DOI:
    10.1093/bioinformatics/bts226
  • 发表时间:
    2012-06-15
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Reinharz, Vladimir;Major, Francois;Waldispuehl, Jerome
  • 通讯作者:
    Waldispuehl, Jerome
On the predictibility of A-minor motifs from their local contexts.
  • DOI:
    10.1080/15476286.2022.2144611
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Gianfrotta, Coline;Reinharz, Vladimir;Lespinet, Olivier;Barth, Dominique;Denise, Alain
  • 通讯作者:
    Denise, Alain
Understanding Hepatitis B Virus Dynamics and the Antiviral Effect of Interferon Alpha Treatment in Humanized Chimeric Mice
  • DOI:
    10.1128/jvi.00492-20
  • 发表时间:
    2021-07-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Reinharz, Vladimir;Ishida, Yuji;Dahari, Harel
  • 通讯作者:
    Dahari, Harel

Reinharz, Vladimir的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Reinharz, Vladimir', 18)}}的其他基金

Automatic discovery and annotation of the impact of chemical modifications in RNA on structure and binding
自动发现和注释 RNA 化学修饰对结构和结合的影响
  • 批准号:
    RGPIN-2020-05795
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Automatic discovery and annotation of the impact of chemical modifications in RNA on structure and binding
自动发现和注释 RNA 化学修饰对结构和结合的影响
  • 批准号:
    RGPIN-2020-05795
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Automatic discovery and annotation of the impact of chemical modifications in RNA on structure and binding
自动发现和注释 RNA 化学修饰对结构和结合的影响
  • 批准号:
    DGECR-2020-00044
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Launch Supplement
Modelling large RNA 3D structures and prediction of folding dynamics
大 RNA 3D 结构建模和折叠动力学预测
  • 批准号:
    444435-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Modelling large RNA 3D structures and prediction of folding dynamics
大 RNA 3D 结构建模和折叠动力学预测
  • 批准号:
    444435-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Modelling large RNA 3D structures and prediction of folding dynamics
大 RNA 3D 结构建模和折叠动力学预测
  • 批准号:
    444435-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral

相似海外基金

Knowledgebase of Escherichia coli Genome and Metabolism
大肠杆菌基因组和代谢知识库
  • 批准号:
    10716050
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Resource Development Core
资源开发核心
  • 批准号:
    10746903
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Discovery and characterization of overlooked antimicrobial resistance genes and mechanisms
被忽视的抗菌素耐药基因和机制的发现和表征
  • 批准号:
    490581
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Operating Grants
Molecular control of chondrocyte hypertrophy: an evolutionary approach
软骨细胞肥大的分子控制:一种进化方法
  • 批准号:
    10606678
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Deep Learning Models for Metabolomics Analysis
用于代谢组学分析的深度学习模型
  • 批准号:
    10552395
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Genetic Architecture of Cerebral Edema after Stroke
中风后脑水肿的遗传结构
  • 批准号:
    10666702
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
Genetic Architecture of Cerebral Edema after Stroke
中风后脑水肿的遗传结构
  • 批准号:
    10446825
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
Discovery of Novel Autism-Associated Variation in Brain Miniproteins
发现大脑微蛋白中与自闭症相关的新变异
  • 批准号:
    10574820
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
MetaboQuest: A Suite of Tools for Metabolite Annotation
MetaboQuest:代谢物注释工具套件
  • 批准号:
    10570907
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
Automatic discovery and annotation of the impact of chemical modifications in RNA on structure and binding
自动发现和注释 RNA 化学修饰对结构和结合的影响
  • 批准号:
    RGPIN-2020-05795
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了