Explicit approaches to L-functions and primes
L 函数和素数的显式方法
基本信息
- 批准号:RGPIN-2020-06731
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Riemann Hypothesis is one of the most sought after conjectures in mathematics. Its application to the distribution of prime numbers is fundamental. The relation between zeros of the Riemann zeta function and primes is at the origin of the field of analytic number theory. The philosophy of this program consists in optimizing and creating analytic number theory tools in order to produce completely explicit results which are numerically relevant. Prominent examples of this strategy can be found in the work of Helfgott on the Goldbach conjecture. Fully descriptive results can also then be directly applied to other fields of mathematics like combinatorics or cryptography. The Riemann Hypothesis and its generalized versions assert that all complex non-trivial zeros of the Riemann zeta function (and other more general families of L-functions) sit along the vertical line passing through ½. Our understanding of primes relies essentially on how far left from the vertical line passing through 1 the zeros are located and how many of them there are. I plan to prove new zero-density results in order to investigate questions about primes between consecutive powers. Unlike the zeta function, L-functions have ``low-lying” zeros (with small imaginary part), and possibly one close to 1 (referred to as “exceptional”). These zeros actually play a significant role in understanding primes (in arithmetic progressions, in number fields). A useful information is the fact that the possible exceptional zero has a repulsion effect on other zeros. I propose to investigate the location and density of zeros. This program includes enlarging zero-free regions and having stronger repulsion phenomenon for Dirichlet and Hecke L-functions. I also want to exhibit scarcity of zeros near the 1-line. I would apply these results to explore several prime number theorems. Together with various smoothing arguments, sieve bounds, and numerical computations, I aim to improve previous explicit estimates for various finite sums and product over prime numbers. Many of the tools developed to study zeros of Dirichlet L-functions and primes in arithmetic progressions can be generalized to Hecke L-functions and to the context of Chebotarev density theorem. In particular I would explore the size of the least prime and of error terms in the Chebotarev density theorem. I am also interested in applications to the Lang-Trotter conjecture and to bounds for primality testing.
黎曼猜想是数学中最受欢迎的猜想之一。它在素数分布上的应用是基本的。黎曼zeta函数的零点和素数之间的关系是解析数论领域的起源。该计划的理念包括优化和创建解析数论工具,以产生完全明确的结果,这是数值相关的。这种策略的突出例子可以在赫尔夫戈特关于哥德巴赫猜想的工作中找到。完全描述性的结果也可以直接应用于其他数学领域,如组合学或密码学。黎曼猜想及其推广版本断言,黎曼zeta函数(以及其他更一般的L-函数族)的所有复数非平凡零点都沿着通过1/2的垂直线。我们对素数的理解基本上依赖于零在通过1的垂直线的左边有多远,以及有多少个零。我计划证明新的零密度结果,以研究连续幂之间的素数问题。与zeta函数不同的是,L函数有“低位”的零(虚部很小),可能还有一个接近1的零(称为“例外”)。这些零实际上在理解素数(在算术级数中,在数域中)中起着重要作用。一个有用的信息是,可能的例外零对其他零有排斥作用。我打算研究零点的位置和密度。该方案包括扩大无零区域和对Dirichlet和Hecke L-函数具有更强的排斥现象。我还想展示1线附近零的稀缺性。我将应用这些结果来探索几个素数定理。再加上各种平滑参数,筛界和数值计算,我的目标是改善以前的显式估计各种有限和产品的素数。许多研究算术级数中Dirichlet L-函数和素数零点的工具可以推广到Hecke L-函数和Chebotarev密度定理。特别是我会探讨的大小最小的素数和错误的条款在Chebotarev密度定理。我也感兴趣的应用程序的朗-特罗特猜想和界素测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kadiri, Habiba其他文献
Breast cancer treatment and sexual dysfunction: Moroccan women's perception
- DOI:
10.1186/1472-6874-11-29 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:2.5
- 作者:
Sbitti, Yassir;Kadiri, Habiba;Errihani, Hassan - 通讯作者:
Errihani, Hassan
Kadiri, Habiba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kadiri, Habiba', 18)}}的其他基金
Explicit approaches to L-functions and primes
L 函数和素数的显式方法
- 批准号:
RGPIN-2020-06731 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Explicit approaches to L-functions and primes
L 函数和素数的显式方法
- 批准号:
RGPIN-2020-06731 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L functions and distribution of primes
L 函数的零点和素数分布
- 批准号:
RGPIN-2015-06799 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L functions and distribution of primes
L 函数的零点和素数分布
- 批准号:
RGPIN-2015-06799 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L functions and distribution of primes
L 函数的零点和素数分布
- 批准号:
RGPIN-2015-06799 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L functions and distribution of primes
L 函数的零点和素数分布
- 批准号:
RGPIN-2015-06799 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L functions and distribution of primes
L 函数的零点和素数分布
- 批准号:
RGPIN-2015-06799 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Fast-kinetics approaches to define direct gene-regulatory functions of MYB in leukemia
快速动力学方法定义 MYB 在白血病中的直接基因调控功能
- 批准号:
10644259 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
High-throughput, untargeted approaches to identify and define the functions of transcription factors regulating key life cycle transitions in Giardia
高通量、无针对性的方法来识别和定义调节贾第鞭毛虫关键生命周期转变的转录因子的功能
- 批准号:
10727571 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Explicit approaches to L-functions and primes
L 函数和素数的显式方法
- 批准号:
RGPIN-2020-06731 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Elucidating extragonadal functions of follicle stimulating hormone using genetic approaches in mice
利用小鼠遗传方法阐明促卵泡激素的性腺外功能
- 批准号:
10685473 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Use of the Noncanonical Amino Acid Mutagenesis Technique in Combination with Other Approaches to Study Functions of Posttranslational Lysine Modifications in Proteins
使用非常规氨基酸诱变技术与其他方法相结合来研究蛋白质翻译后赖氨酸修饰的功能
- 批准号:
10406602 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Use of the Noncanonical Amino Acid Mutagenesis Technique in Combination with Other Approaches to Study Functions of Posttranslational Lysine Modifications in Proteins
使用非常规氨基酸诱变技术与其他方法相结合来研究蛋白质翻译后赖氨酸修饰的功能
- 批准号:
10591531 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Elucidating extragonadal functions of follicle stimulating hormone using genetic approaches in mice
利用小鼠遗传方法阐明促卵泡激素的性腺外功能
- 批准号:
10534492 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Machine Learning and Multi-omics Network Approaches to Predict Protein Functions in Arabidopsis
机器学习和多组学网络方法预测拟南芥蛋白质功能
- 批准号:
2038872 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
Explicit approaches to L-functions and primes
L 函数和素数的显式方法
- 批准号:
RGPIN-2020-06731 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Proteomics approaches for illuminating the functions of the dark kinases Nek6, Nek7 & Nek9
阐明暗激酶 Nek6、Nek7 功能的蛋白质组学方法
- 批准号:
10216469 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别: