Channel characterization and adaptive learning solutions for WiFi-assisted sensing in indoor environments
室内环境中 WiFi 辅助传感的信道表征和自适应学习解决方案
基本信息
- 批准号:571362-2021
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Motion sensing in an indoor environment is a strong desire of a multitude of people due to its potential applications in smart homes, remote health monitoring and assisted daily living. Contrary to image-based sensing technologies, wireless signals (e.g., Wi-Fi) can be leveraged for motion sensing in a privacy-preserved manner without affecting daily routines. Considering the ubiquitous presence of Wi-Fi signals and significance of motion sensing, our partner organization (PO) 'Cognitive Systems Corp' developed a Wi-Fi Motion Sensing (WMS) system. However, the existing WMS system has few limitations such as (i) predicting only a specific motion, limited in resolution to an independent Wi-Fi device operating in the system. (ii) limited multi-user resolution, due to the absence of distinguishing features between single and multi-user channel disturbances, (iii) limited training labels for supervised machine learning (ML) solutions, and (iv) can only be deployed in a few particular indoor environments. In this research project, we aim to address these limitations through proposing novel ML solutions and perform the feasibility analysis of disruptive communication technologies such as reconfigurable intelligent surfaces (RISs) for the WMS system. The primary goals of this project are (A) Characterize indoor wireless channel models mathematically in multi-user environments and generate a comprehensive dataset for various ML solutions. These synthetic datasets will be able to diversify the labeled datasets that are currently owned by our PO and thus can potentially enhance the localization accuracy of the ML-empowered WMS system, (B) Derive novel customized loss functions and develop various supervised, self-supervised, and semi-supervised ML solutions, and (C) Analyze the significance of RISs in increasing the accuracy of the WMS system through computer simulations. The PO will make full use of the advancements and findings of this research project, hence will be able to continue to lead in the field of motion sensing at a global scale.
室内环境中的运动感测由于其在智能家居、远程健康监测和辅助日常生活中的潜在应用而成为许多人的强烈愿望。与基于图像的感测技术相反,无线信号(例如,Wi-Fi)可以以保护隐私的方式用于运动感测,而不会影响日常生活。考虑到Wi-Fi信号的普遍存在和运动传感的重要性,我们的合作伙伴组织(PO)“认知系统公司”开发了Wi-Fi运动传感(WMS)系统。然而,现有的WMS系统具有很少的限制,例如(i)仅预测特定运动,在分辨率上限于在系统中操作的独立Wi-Fi设备。(ii)有限的多用户分辨率,这是由于单用户和多用户信道干扰之间缺乏区分特征,(iii)用于监督机器学习(ML)解决方案的有限训练标签,以及(iv)只能部署在少数特定的室内环境中。在本研究项目中,我们的目标是通过提出新的ML解决方案来解决这些限制,并对WMS系统的可重构智能表面(RIS)等破坏性通信技术进行可行性分析。该项目的主要目标是(A)在多用户环境中对室内无线信道模型进行数学表征,并为各种ML解决方案生成全面的数据集。这些合成数据集将能够使我们的PO当前拥有的标记数据集多样化,并且因此可以潜在地增强ML授权的WMS系统的定位准确性,(B)导出新颖的定制损失函数并开发各种监督、自监督和半监督ML解决方案,以及(C)通过计算机模拟分析RIS在提高WMS系统的准确性方面的重要性。PO将充分利用该研究项目的进展和成果,从而能够继续在全球范围内引领运动传感领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tabassum, Hina其他文献
Dynamic User Clustering and Power Allocation for Uplink and Downlink Non-Orthogonal Multiple Access (NOMA) Systems
- DOI:
10.1109/access.2016.2604821 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:3.9
- 作者:
Ali, Md Shipon;Tabassum, Hina;Hossain, Ekram - 通讯作者:
Hossain, Ekram
AMBIENT RF ENERGY HARVESTING IN ULTRA-DENSE SMALL CELL NETWORKS: PERFORMANCE AND TRADE-OFFS
- DOI:
10.1109/mwc.2016.7462483 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:12.9
- 作者:
Ghazanfari, Amin;Tabassum, Hina;Hossain, Ekram - 通讯作者:
Hossain, Ekram
Optimization of Wireless Relaying With Flexible UAV-Borne Reflecting Surfaces
- DOI:
10.1109/tcomm.2020.3032700 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:8.3
- 作者:
Shafique, Taniya;Tabassum, Hina;Hossain, Ekram - 通讯作者:
Hossain, Ekram
WIRELESS BACKHAULING OF 5G SMALL CELLS: CHALLENGES AND SOLUTION APPROACHES
- DOI:
10.1109/mwc.2015.7306534 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:12.9
- 作者:
Siddique, Uzma;Tabassum, Hina;Kim, Dong In - 通讯作者:
Kim, Dong In
Multi-Tier Drone Architecture for 5G/B5G Cellular Networks: Challenges, Trends, and Prospects
- DOI:
10.1109/mcom.2018.1700666 - 发表时间:
2018-03-01 - 期刊:
- 影响因子:11.2
- 作者:
Sekander, Silvia;Tabassum, Hina;Hossain, Ekram - 通讯作者:
Hossain, Ekram
Tabassum, Hina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tabassum, Hina', 18)}}的其他基金
Massive, Heterogeneous, and User Centric Wireless Networks: Modeling and Optimization
大规模、异构和以用户为中心的无线网络:建模和优化
- 批准号:
RGPIN-2019-06357 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Massive, Heterogeneous, and User Centric Wireless Networks: Modeling and Optimization
大规模、异构和以用户为中心的无线网络:建模和优化
- 批准号:
RGPIN-2019-06357 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Massive, Heterogeneous, and User Centric Wireless Networks: Modeling and Optimization
大规模、异构和以用户为中心的无线网络:建模和优化
- 批准号:
RGPIN-2019-06357 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Massive, Heterogeneous, and User Centric Wireless Networks: Modeling and Optimization
大规模、异构和以用户为中心的无线网络:建模和优化
- 批准号:
DGECR-2019-00440 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Launch Supplement
Massive, Heterogeneous, and User Centric Wireless Networks: Modeling and Optimization
大规模、异构和以用户为中心的无线网络:建模和优化
- 批准号:
RGPIN-2019-06357 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
- 批准号:
24K07389 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive characterization of the genetic factors and the host immune response associated to protection from clinical Plasmodium vivax malaria
与预防临床间日疟原虫疟疾相关的遗传因素和宿主免疫反应的综合特征
- 批准号:
10634775 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Software for the complete characterization of antibody repertoires: from germline and mRNA sequence assembly to deep learning predictions of their protein structures and targets
用于完整表征抗体库的软件:从种系和 mRNA 序列组装到其蛋白质结构和靶标的深度学习预测
- 批准号:
10699546 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Biochemical and functional characterization of a novel anti-inflammatory biogenic amine
新型抗炎生物胺的生化和功能表征
- 批准号:
10610183 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Characterization and targeting of a novel pathway promoting Parkinson’s Disease
促进帕金森病的新途径的表征和靶向
- 批准号:
10855706 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Pan-Cancer characterization of 3’UTR somatic mutations controlling tumor immune evasion
控制肿瘤免疫逃避的 3-UTR 体细胞突变的泛癌症特征
- 批准号:
10364784 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Channel characterization and adaptive learning solutions for WiFi-assisted sensing in indoor environments
室内环境中 WiFi 辅助传感的信道表征和自适应学习解决方案
- 批准号:
571362-2021 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Alliance Grants
Adjuvant Comparison and Characterization of Peanut Antigen
花生抗原的佐剂比较和表征
- 批准号:
10691638 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Systematic Discovery and Characterization of Novel Cancer Anti-Phagocytic Mechanisms
新型癌症抗吞噬机制的系统发现和表征
- 批准号:
10370993 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别: