"New Algorithms for Cosmological Data Analaysis"

“宇宙学数据分析的新算法”

基本信息

  • 批准号:
    RGPIN-2020-04816
  • 负责人:
  • 金额:
    $ 3.64万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Modern astronomical data has revealed a universe full of puzzles and surprises. We have learned that most of the matter in the universe is "dark matter", a new type of matter we have not been able to produce in the laboratory. We have learned that recently in cosmic history, the universe has become dominated by "dark energy", a fluid-like component which is distinct from dark matter and ordinary  matter. Through the cosmic microwave background, we have obtained a glimpse of the quantum mechanical processes responsible for starting the universe in a big bang state. I am a cosmologist whose work combines theoretical physics, data analysis, and software engineering. Modern cosmology is a heavily computational subject, and each new generation of telescopes brings new computational and data analysis challenges. I lead a team of students and postdocs at Perimeter Institute focused on developing new algorithms, statistical methods, and software tools for upcoming experiments. This type of high-impact research is an amazing opportunity for students to help answer central unsolved problems in astrophysics, and for Canada to play a leading role on the international stage. Currently, my research team is concentrating on three main research topics. First, we are developing algorithms and software for the CHIME (Canadian Hydrogen Intensity Mapping Experiment) telescope. CHIME is a new radio telescope in British Columbia, and the first new Canadian research telescope in several decades. Thanks in part to our work, CHIME is the world's most powerful telescope (by far!) for finding fast radio bursts, a mysterious type of violent astrophysical event whose origin is not yet understood. Second, my group is part of the Simons Observatory, an international project to build the world's largest CMB (cosmic microwave background) telescope, starting in 2021-22. This instrument will look back to the earliest moments in the universe's history in unprecedented detail. Its overarching goal is to answer some of the oldest questions in science: What is the universe made of? How did it begin? How will it end? Our research focuses on new statistics for analyzing CMB fluctuations on the very smallest scales, where new technical challenges arise. Third, I am interested in exploring applications of artificial intelligence (AI) in astrophysics. AI is an emerging technology with transformative potential in many areas of science, including astrophysics. In the last few years, progress in AI has accelerated dramatically, thanks to faster computing hardware and foundational improvements in AI algorithms. The next few years will be an exciting time to explore ideas for using AI in cosmology, astrophysics, and beyond.
现代天文数据揭示了一个充满谜团和惊喜的宇宙。我们了解到,宇宙中的大部分物质都是“暗物质”,这是一种我们在实验室中还无法产生的新型物质。我们了解到,在最近的宇宙史上,宇宙已经变得由“暗能量”主导,这是一种有别于暗物质和普通物质的类流体成分。通过宇宙微波背景,我们得以一窥导致宇宙处于大爆炸状态的量子力学过程。我是一名宇宙学家,他的工作结合了理论物理、数据分析和软件工程。现代宇宙学是一门计算量很大的学科,每一代新望远镜都带来了新的计算和数据分析挑战。我在周长研究所带领一个学生和博士后团队,专注于为即将到来的实验开发新的算法、统计方法和软件工具。这种高影响力的研究对学生来说是一个绝佳的机会,可以帮助他们回答天体物理学中悬而未决的核心问题,也可以让加拿大在国际舞台上发挥主导作用。目前,我的研究团队集中在三个主要研究课题上。首先,我们正在为CHME(加拿大氢强度测绘实验)望远镜开发算法和软件。CHINE是不列颠哥伦比亚省的一个新射电望远镜,也是加拿大几十年来第一个新的研究望远镜。部分归功于我们的工作,CHINE是世界上最强大的望远镜(到目前为止!)寻找快速射电爆发,这是一种神秘的暴力天体物理事件,其来源尚不清楚。其次,我的团队是西蒙斯天文台的一部分,这是一个国际项目,旨在从2021-22年开始建造世界上最大的CMB(宇宙微波背景)望远镜。这台仪器将以前所未有的细节回顾宇宙历史上最早的时刻。它的首要目标是回答一些科学上最古老的问题:宇宙是由什么组成的?它是怎么开始的?它将如何结束?我们的研究重点是新的统计数据,用于在最小的尺度上分析CMB的波动,在这种情况下,会出现新的技术挑战。第三,我对探索人工智能(AI)在天体物理学中的应用感兴趣。人工智能是一项新兴技术,在包括天体物理学在内的许多科学领域都具有变革的潜力。在过去的几年里,由于更快的计算硬件和人工智能算法的基础性改进,人工智能的进步急剧加快。接下来的几年将是探索在宇宙学、天体物理学和其他领域使用人工智能的想法的令人兴奋的时刻。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Smith, Kendrick其他文献

Symmetric Satellite Swarms and Choreographic Crystals
  • DOI:
    10.1103/physrevlett.116.015503
  • 发表时间:
    2016-01-08
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Boyle, Latham;Khoo, Jun Yong;Smith, Kendrick
  • 通讯作者:
    Smith, Kendrick

Smith, Kendrick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Smith, Kendrick', 18)}}的其他基金

"New Algorithms for Cosmological Data Analaysis"
“宇宙学数据分析的新算法”
  • 批准号:
    RGPIN-2020-04816
  • 财政年份:
    2022
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
"New Algorithms for Cosmological Data Analaysis"
“宇宙学数据分析的新算法”
  • 批准号:
    RGPIN-2020-04816
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Next generation data analysis for CMB and large-scale structure
CMB 和大型结构的下一代数据分析
  • 批准号:
    RGPIN-2014-04855
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Next generation data analysis for CMB and large-scale structure
CMB 和大型结构的下一代数据分析
  • 批准号:
    RGPIN-2014-04855
  • 财政年份:
    2018
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Next generation data analysis for CMB and large-scale structure
CMB 和大型结构的下一代数据分析
  • 批准号:
    RGPIN-2014-04855
  • 财政年份:
    2017
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Next generation data analysis for CMB and large-scale structure
CMB 和大型结构的下一代数据分析
  • 批准号:
    RGPIN-2014-04855
  • 财政年份:
    2016
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Next generation data analysis for CMB and large-scale structure
CMB 和大型结构的下一代数据分析
  • 批准号:
    RGPIN-2014-04855
  • 财政年份:
    2015
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Next generation data analysis for CMB and large-scale structure
CMB 和大型结构的下一代数据分析
  • 批准号:
    RGPIN-2014-04855
  • 财政年份:
    2014
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了