Advanced Techniques for Action Model Solicitation, Verification, and Induction

行动模型征求、验证和归纳的先进技术

基本信息

  • 批准号:
    RGPIN-2020-05501
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Autonomous systems are becoming a vital part of everyday life. Systems that can reason about the world and take goal-directed actions are at the forefront of sophisticated autonomous behaviour, and constructing them remains a challenge. The sub-field of Artificial Intelligence known as Automated Planning (AP) focuses on how to build autonomous systems that interact with environments (both virtual and physical). AP does so by synthesizing plans or policies for an agent to follow, given a model of the environment. AP research has made tremendous strides in recent decades, leading to numerous industry applications including robotics, dialogue generation, and business process automation. This proposal aims to directly address some of the greatest barriers to deploying AP solutions. A key bottleneck for using AP technology is the task of model acquisition: the process of acquiring specifications or models to describe the autonomous system behaviour. The proposed research directly focuses on this crucial and understudied step. In particular, three complementary threads of research will address various aspects of model acquisition -- from manual model solicitation to fully autonomous model induction. The first thread will improve the capability of manual model specification by applying modern AI reasoning techniques to the process. A suite of advanced analysis and verification techniques, such as automated case-based testing of action reachability or redundancy, will identify and highlight model inconsistencies and insufficiencies. The second thread of research will unify model representations by introducing a common logic-based specification. The final thread will focus on model induction: semi- or fully-autonomous inference of AP models in a data-driven fashion. Using a combination of modern machine learning techniques with innate priors informed by AP theory, this line of work can greatly reduce the burden on practitioners synthesizing autonomous systems. Synergy between these three threads will lead to a substantial improvement in the process of model acquisition. All aspects of the work reflect an integrated approach that will form a single framework for model acquisition. This will be made publicly available to both the research community focused on AP techniques, as well as practitioners that deploy AP solutions in industry today. Improved model acquisition will have a direct and substantial impact on the business areas of dialogue agent design and business process automation, both of which depend on action model acquisition. The training of highly qualified personnel for this research will provide them with the opportunity to develop skills in many fundamental and emerging areas of Artificial Intelligence. I expect that two PhD students, two Master's students, and four undergraduate students will acquire training through this program; preparing them for the high-demand area of AI in either academia or industry.
自主系统正在成为日常生活的重要组成部分。能够对世界进行推理并采取目标导向行动的系统处于复杂自主行为的最前沿,构建它们仍然是一个挑战。人工智能的子领域称为自动规划(AP),重点关注如何构建与环境(虚拟和物理)交互的自治系统。AP通过在给定环境模型的情况下综合代理遵循的计划或策略来实现这一点。近几十年来,AP研究取得了巨大的进步,导致了许多行业应用,包括机器人技术,对话生成和业务流程自动化。该提案旨在直接解决部署AP解决方案的一些最大障碍。使用AP技术的一个关键瓶颈是模型获取的任务:获取规范或模型来描述自治系统行为的过程。拟议的研究直接集中在这一关键和未充分研究的步骤。特别是,三个互补的研究线程将解决模型获取的各个方面-从手动模型请求到完全自主的模型归纳。第一个线程将通过将现代AI推理技术应用于该过程来提高手动模型规范的能力。一套先进的分析和验证技术,如自动化的基于案例的测试行动的可达性或冗余,将识别和突出模型的不一致和不一致。研究的第二个线程将通过引入一个公共的基于逻辑的规范来统一模型表示。最后一个线程将关注模型归纳:以数据驱动的方式对AP模型进行半自主或全自主推理。通过将现代机器学习技术与AP理论提供的先天先验知识相结合,这一工作可以大大减轻从业者合成自治系统的负担。这三个线程之间的协同作用将导致模型获取过程的实质性改进。工作的所有方面都反映了一种综合的方法,将形成一个单一的模型获取框架。这将公开提供给专注于AP技术的研究社区,以及当今在行业中部署AP解决方案的从业者。改进的模型获取将对对话代理设计和业务流程自动化这两个依赖于动作模型获取的业务领域产生直接和实质性的影响。为这项研究培养高素质的人才将为他们提供在人工智能的许多基础和新兴领域发展技能的机会。我预计两名博士生,两名硕士生和四名本科生将通过该计划获得培训;为学术界或工业界的人工智能高需求领域做好准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Muise, Christian其他文献

Muise, Christian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Muise, Christian', 18)}}的其他基金

Customizable Platform for Autonomous Agriculture Research
自主农业研究的可定制平台
  • 批准号:
    RTI-2023-00401
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Research Tools and Instruments
Advanced Techniques for Action Model Solicitation, Verification, and Induction
行动模型征求、验证和归纳的先进技术
  • 批准号:
    RGPIN-2020-05501
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Techniques for Action Model Solicitation, Verification, and Induction
行动模型征求、验证和归纳的先进技术
  • 批准号:
    DGECR-2020-00308
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Launch Supplement
Advanced Techniques for Action Model Solicitation, Verification, and Induction
行动模型征求、验证和归纳的先进技术
  • 批准号:
    RGPIN-2020-05501
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Synthesizing Plans With Temporal Uncertainty
综合具有时间不确定性的计划
  • 批准号:
    471701-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Postdoctoral Fellowships
Synthesizing Plans With Temporal Uncertainty
综合具有时间不确定性的计划
  • 批准号:
    471701-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Postdoctoral Fellowships
Synthesizing Plans With Temporal Uncertainty
综合具有时间不确定性的计划
  • 批准号:
    471701-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Postdoctoral Fellowships

相似国自然基金

EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金

相似海外基金

Advanced Techniques for Action Model Solicitation, Verification, and Induction
行动模型征求、验证和归纳的先进技术
  • 批准号:
    RGPIN-2020-05501
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Identifying, developing and embedding citizen science techniques in action research to evaluate locally led solutions for water quality monitoring
识别、开发公民科学技术并将其嵌入行动研究中,以评估当地主导的水质监测解决方案
  • 批准号:
    BB/T018755/1
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Research Grant
Advanced Techniques for Action Model Solicitation, Verification, and Induction
行动模型征求、验证和归纳的先进技术
  • 批准号:
    DGECR-2020-00308
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Launch Supplement
The Mode of Action of Metformin and Guanylurea in Zebrafish: Physiological End-Points, Generational Effects and Genome Altering Techniques
二甲双胍和脒脲在斑马鱼中的作用方式:生理终点、世代效应和基因组改变技术
  • 批准号:
    535952-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Postdoctoral Fellowships
Advanced Techniques for Action Model Solicitation, Verification, and Induction
行动模型征求、验证和归纳的先进技术
  • 批准号:
    RGPIN-2020-05501
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Rationale, mechanisms of action, and behaviour change techniques of the E_MOTIV intervention: A web-based, adaptive e-learning environment to support the implementation of behaviour change counseling in nurses' practice
E_MOTIV 干预的基本原理、行动机制和行为改变技术:基于网络的自适应电子学习环境,支持在护士实践中实施行为改变咨询
  • 批准号:
    400309
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
The Mode of Action of Metformin and Guanylurea in Zebrafish: Physiological End-Points, Generational Effects and Genome Altering Techniques
二甲双胍和脒脲在斑马鱼中的作用方式:生理终点、世代效应和基因组改变技术
  • 批准号:
    535952-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Postdoctoral Fellowships
Meaning in Action—new techniques for language, logic and information
行动的意义——语言、逻辑和信息的新技术
  • 批准号:
    DP150103801
  • 财政年份:
    2015
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Projects
Elucidation of the action mechanisms lectins through protein engineering techniques and their application to the development of novel functions
通过蛋白质工程技术阐明凝集素的作用机制及其在新功能开发中的应用
  • 批准号:
    26450128
  • 财政年份:
    2014
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Application of microdialysis techniques to evaluation system for local pharmacokinetics of topically delivered drugs guaranteeing regionally confined drug action
微透析技术在局部给药药物局部药代动力学评价系统中的应用,保证区域有限的药物作用
  • 批准号:
    21590161
  • 财政年份:
    2009
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了