Systems and Algorithms for Easy-to-use Federated Data Science
易于使用的联合数据科学系统和算法
基本信息
- 批准号:RGPIN-2020-05534
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Data science research and technology drive a significant impact on creating insights from data in applications, such as cognitive neuroscience, personalized marketing, and government fraud. In these applications, there is a need to enable data-driven discoveries on multiple scientific disciplines, and datasets maintained by various organizations across geographical boundaries. These applications demand innovative ways to exchange, share, process, and visualize huge amounts of data. Consequently, data scientists need access to internal and external data sources that accumulate vast amounts of geo-distributed and decentralized datasets. These datasets are accessed on a regular basis to perform different data integration, extraction, and analytics tasks that are usually organized in a pipeline fashion. As reported recently in "Building a Nation of Innovators", Canada invests $570 million to enhance researchers' access to advanced computing and big data resources. This grant application is aligned with this vision to keep Canada at the forefront of one of the highest-demand sectors in technology, i.e., data science. My research program has a long-term vision to develop an easy-to-use federated data science platform, including advanced algorithms to support data science applications on geo-distributed datasets. This grant application proposes four short-term objectives: (a) natural language interfaces for data science platforms, (b) data science versioning control to enhance collaboration while maintaining accuracy and fairness, (c) a federated engine for managing and optimizing data science workloads over geo-distributed datasets, and (d) technology transfer to apply our findings to neuroscience and integrate our systems into existing data science platforms. This grant application focuses on geo-distributed datasets in the form of knowledge graphs and linked web data. We will leverage cloud resources and parallel architectures to provide a collaborative workspace, in which data scientists can work together and scale up their data science workloads. This grant application aims to advance the state of the art in a highly competitive area that bridges the gap between data systems and data-driven intelligence on extracting insight from a vast pool of geo-distributed datasets. The proposed research and its main outcomes will support Canada in competing in the global innovation race. Employment in the data science market is rapidly growing. This application supports training that provides highly qualified personnel in this area to avoid anticipated shortage in the Canadian labour market. This application plans to train several students in the theoretical and practical aspects of data science, and help various Canadian startups to create business value from their data. The whole spectrum of scientific disciplines includes promising real applications for our research program. This will help the students to demonstrate their systems using real use-cases.
数据科学研究和技术对从应用程序中的数据中创建见解产生了重大影响,例如认知神经科学,个性化营销和政府欺诈。在这些应用程序中,需要在多个科学学科上实现数据驱动的发现,以及跨地理边界的各种组织维护的数据集。这些应用程序需要创新的方式来交换、共享、处理和可视化大量数据。因此,数据科学家需要访问内部和外部数据源,这些数据源积累了大量地理分布和分散的数据集。定期访问这些数据集,以执行通常以管道方式组织的不同数据集成,提取和分析任务。正如最近在《建设创新者的国家》中所报道的那样,加拿大投资5.7亿美元,以加强研究人员获得先进计算和大数据资源的机会。这项拨款申请符合这一愿景,使加拿大保持在技术需求最高的行业之一的最前沿,即,数据科学 我的研究项目有一个长期的愿景,即开发一个易于使用的联合数据科学平台,包括支持地理分布式数据集上的数据科学应用的高级算法。本项目提出了四个短期目标:(a)数据科学平台的自然语言接口,(B)数据科学版本控制,以增强协作,同时保持准确性和公平性,(c)用于管理和优化地理分布数据集的数据科学工作负载的联合引擎,以及(d)技术转让,将我们的研究成果应用于神经科学,并将我们的系统集成到现有的数据科学平台中。该资助申请的重点是知识图和链接网络数据形式的地理分布数据集。我们将利用云资源和并行架构来提供协作工作空间,数据科学家可以在其中共同工作并扩展其数据科学工作负载。 这项资助申请旨在推进竞争激烈的领域的最新技术,弥合数据系统和数据驱动智能之间的差距,从大量地理分布的数据集中提取洞察力。拟议的研究及其主要成果将支持加拿大在全球创新竞赛中的竞争。数据科学市场的就业正在迅速增长。该应用程序支持培训,提供这一领域的高素质人才,以避免加拿大劳动力市场的预期短缺。该应用程序计划在数据科学的理论和实践方面培训几名学生,并帮助各种加拿大初创公司从他们的数据中创造商业价值。科学学科的整个频谱包括有前途的真实的应用我们的研究计划。这将帮助学生使用真实的用例来演示他们的系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mansour, Essam其他文献
Accordion: Elastic Scalability for Database Systems Supporting Distributed Transactions
- DOI:
10.14778/2732977.2732979 - 发表时间:
2014-08-01 - 期刊:
- 影响因子:2.5
- 作者:
Serafini, Marco;Mansour, Essam;Minhas, Umar Farooq - 通讯作者:
Minhas, Umar Farooq
Health informatics: The ownership and use of mobile medical applications among Egyptian patients
- DOI:
10.1177/0961000616637669 - 发表时间:
2017-09-01 - 期刊:
- 影响因子:1.7
- 作者:
Mansour, Essam - 通讯作者:
Mansour, Essam
ERA: Efficient Serial and Parallel Suffix Tree Construction for Very Long Strings
- DOI:
10.14778/2047485.2047490 - 发表时间:
2011-09-01 - 期刊:
- 影响因子:2.5
- 作者:
Mansour, Essam;Allam, Amin;Kalnis, Panos - 通讯作者:
Kalnis, Panos
The information-seeking behaviour of Egyptian parents of children with Autism Spectrum Disorder (ASD): a descriptive study
- DOI:
10.1108/oir-11-2020-0494 - 发表时间:
2021-04-29 - 期刊:
- 影响因子:3.1
- 作者:
Mansour, Essam - 通讯作者:
Mansour, Essam
Mansour, Essam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mansour, Essam', 18)}}的其他基金
Systems and Algorithms for Easy-to-use Federated Data Science
易于使用的联合数据科学系统和算法
- 批准号:
RGPIN-2020-05534 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Systems and Algorithms for Easy-to-use Federated Data Science
易于使用的联合数据科学系统和算法
- 批准号:
DGECR-2020-00292 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
Systems and Algorithms for Easy-to-use Federated Data Science
易于使用的联合数据科学系统和算法
- 批准号:
RGPIN-2020-05534 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant