Mining educational data to provide intelligent information and personalized recommendations

挖掘教育数据,提供智能信息和个性化推荐

基本信息

  • 批准号:
    RGPIN-2020-05837
  • 负责人:
  • 金额:
    $ 2.99万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Online courses have become very popular in recent years. While such courses have many advantages, they also have drawbacks, including high dropout rates, little or no feedback for educators on how learners learn, and little or no personalization for learners. Other fields such as business have successfully used data analytics, data mining, user modelling and personalization to address similar problems but educational systems currently do not employ such techniques. The primary objective of this research program is to advance research in data analytics, data mining, user modelling, and personalization in the educational domain through designing and evaluating algorithms and techniques to analyze and mine educational data, create user profiles, and use these profiles to provide users (learners and educators) with personalized information and personalized recommendations for improvement. This research program aims to create and evaluate educational data mining algorithms and learning analytics techniques that can not only identify effective and ineffective behaviour patterns of learners and educators but also identify learners who are at risk of dropping out or failing a course. These algorithms and techniques will then be enriched with approaches from the fields of personalization and user modelling to advance current research and create truly personal profiles of learners and educators. At Athabasca University, I have access to data gathered from over 850 online courses - a dataset that is majestic in size and that can be used to produce reliable and generalizable results. Furthermore, this program aims to develop and evaluate artificial intelligence and recommender system techniques that will use the information generated about learners' risk levels as well as effective and ineffective behaviour patterns of learners and educators to provide personalized recommendations. Personalization will be applied on various levels, and an automatic feedback mechanism will be developed to further enhance the accuracy and usefulness of the recommendations. The final result will be an open-source tool suite consisting of a set of software solutions for learners and educators that can not only be integrated with common online learning systems but also used and built upon by other researchers. These software solutions will act as personal coaches for the learners and educators, giving them information about their learning and teaching processes (e.g., learner risk levels and the effectiveness of learner and educator behaviour patterns). These coaches will also provide personalized recommendations on how to change behaviour patterns to (a) improve the effectiveness of teaching and learning, (b) reduce dropout rates, and (c) improve outcomes for the learners. In addition, this program will demonstrate the potential of using data mining, data analytics, user modelling, and personalization to improve online learning systems and to benefit education across Canada.
近年来,在线课程变得非常受欢迎。虽然这类课程有很多优点,但它们也有缺点,包括高辍学率,教育工作者很少或根本没有就学习者的学习方式提供反馈,以及很少或根本没有为学习者提供个性化服务。其他领域,如商业,已经成功地使用数据分析、数据挖掘、用户建模和个性化来解决类似问题,但教育系统目前没有采用这种技术。该研究计划的主要目标是通过设计和评估分析和挖掘教育数据的算法和技术,创建用户配置文件,并使用这些配置文件为用户(学习者和教育工作者)提供个性化信息和个性化改进建议,来推进教育领域的数据分析、数据挖掘、用户建模和个性化研究。这项研究计划旨在创建和评估教育数据挖掘算法和学习分析技术,这些算法和学习分析技术不仅可以识别学习者和教育工作者的有效和无效行为模式,还可以识别面临辍学或失败风险的学习者。然后,这些算法和技术将被来自个性化和用户建模领域的方法丰富,以推进当前的研究并创建真正的学习者和教育者的个人档案。在阿萨巴斯卡大学,我可以访问从850多门在线课程中收集的数据--这是一个规模巨大的数据集,可以用来产生可靠和可推广的结果。此外,该项目旨在开发和评估人工智能和推荐系统技术,这些技术将使用生成的关于学习者风险水平的信息以及学习者和教育工作者的有效和无效行为模式来提供个性化建议。将在各个层面应用个性化,并将开发自动反馈机制,以进一步提高建议的准确性和实用性。最终结果将是一个开放源码工具套件,其中包括一套供学习者和教育工作者使用的软件解决方案,这些解决方案不仅可以与常见的在线学习系统集成,还可以供其他研究人员使用和构建。这些软件解决方案将作为学习者和教育工作者的个人教练,向他们提供有关其学习和教学过程的信息(例如,学习者风险水平以及学习者和教育工作者行为模式的有效性)。这些教练还将就如何改变行为模式提供个性化建议,以(A)提高教与学的有效性,(B)降低辍学率,(C)改善学习者的结果。此外,该项目将展示使用数据挖掘、数据分析、用户建模和个性化来改进在线学习系统并使加拿大各地的教育受益的潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Graf, Sabine其他文献

Evaluation of a learning analytics tool for supporting teachers in the creation and evaluation of accessible and quality open educational resources
Impact of personality traits on learners' navigational behavior patterns in an online course: a lag sequential analysis approach.
  • DOI:
    10.3389/fpsyg.2023.1071985
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Tlili, Ahmed;Sun, Tianyue;Denden, Mouna;Kinshuk;Graf, Sabine;Fei, Cheng;Wang, Huanhuan
  • 通讯作者:
    Wang, Huanhuan
A fully personalization strategy of E-learning scenarios
  • DOI:
    10.1016/j.chb.2009.12.010
  • 发表时间:
    2010-07-01
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Essalmi, Fathi;Ben Ayed, Leila Jemni;Graf, Sabine
  • 通讯作者:
    Graf, Sabine
In-Depth Analysis of the Felder-Silverman Learning Style Dimensions
Learning style Identifier: Improving the precision of learning style identification through computational intelligence algorithms
  • DOI:
    10.1016/j.eswa.2017.01.021
  • 发表时间:
    2017-06-01
  • 期刊:
  • 影响因子:
    8.5
  • 作者:
    Bernard, Jason;Chang, Ting-Wen;Graf, Sabine
  • 通讯作者:
    Graf, Sabine

Graf, Sabine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Graf, Sabine', 18)}}的其他基金

Mining educational data to provide intelligent information and personalized recommendations
挖掘教育数据,提供智能信息和个性化推荐
  • 批准号:
    RGPIN-2020-05837
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Mining educational data to provide intelligent information and personalized recommendations
挖掘教育数据,提供智能信息和个性化推荐
  • 批准号:
    RGPIN-2020-05837
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Combining User Profiling and Context Modelling to Provide Advanced Adaptivity and Personalization
结合用户分析和上下文建模以提供高级适应性和个性化
  • 批准号:
    402053-2012
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Combining User Profiling and Context Modelling to Provide Advanced Adaptivity and Personalization
结合用户分析和上下文建模以提供高级适应性和个性化
  • 批准号:
    402053-2012
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Combining User Profiling and Context Modelling to Provide Advanced Adaptivity and Personalization
结合用户分析和上下文建模以提供高级适应性和个性化
  • 批准号:
    402053-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Combining User Profiling and Context Modelling to Provide Advanced Adaptivity and Personalization
结合用户分析和上下文建模以提供高级适应性和个性化
  • 批准号:
    402053-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Combining User Profiling and Context Modelling to Provide Advanced Adaptivity and Personalization
结合用户分析和上下文建模以提供高级适应性和个性化
  • 批准号:
    402053-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Combining User Profiling and Context Modelling to Provide Advanced Adaptivity and Personalization
结合用户分析和上下文建模以提供高级适应性和个性化
  • 批准号:
    402053-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Combining User Profiling and Context Modelling to Provide Advanced Adaptivity and Personalization
结合用户分析和上下文建模以提供高级适应性和个性化
  • 批准号:
    402053-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Combining User Profiling and Context Modelling to Provide Advanced Adaptivity and Personalization
结合用户分析和上下文建模以提供高级适应性和个性化
  • 批准号:
    402053-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Collaborative Research: Investigating Gender Differences in Digital Learning Games with Educational Data Mining
协作研究:利用教育数据挖掘调查数字学习游戏中的性别差异
  • 批准号:
    2201799
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
ARCHS4: Massive Mining of Publicly Available RNA Sequencing Data
ARCHS4:大规模挖掘公开的 RNA 测序数据
  • 批准号:
    10693339
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
Support for U.S. Doctoral Students to Participate in the Annual Artificial Intelligence in Education (AIED) and co-located Educational Data Mining (EDM) Conferences
支持美国博士生参加年度教育人工智能 (AIED) 和同期举办的教育数据挖掘 (EDM) 会议
  • 批准号:
    2225091
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Gender Differences in Digital Learning Games with Educational Data Mining
协作研究:利用教育数据挖掘调查数字学习游戏中的性别差异
  • 批准号:
    2201796
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
ARCHS4: Massive Mining of Publicly Available RNA Sequencing Data
ARCHS4:大规模挖掘公开的 RNA 测序数据
  • 批准号:
    10527721
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
Collaborative Research: Investigating Gender Differences in Digital Learning Games with Educational Data Mining
协作研究:利用教育数据挖掘调查数字学习游戏中的性别差异
  • 批准号:
    2201800
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Investigating Gender Differences in Digital Learning Games with Educational Data Mining
协作研究:利用教育数据挖掘调查数字学习游戏中的性别差异
  • 批准号:
    2201797
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Investigating Gender Differences in Digital Learning Games with Educational Data Mining
协作研究:利用教育数据挖掘调查数字学习游戏中的性别差异
  • 批准号:
    2201798
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
Mining educational data to provide intelligent information and personalized recommendations
挖掘教育数据,提供智能信息和个性化推荐
  • 批准号:
    RGPIN-2020-05837
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Mining educational data to provide intelligent information and personalized recommendations
挖掘教育数据,提供智能信息和个性化推荐
  • 批准号:
    RGPIN-2020-05837
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了