New Machine Learning Approaches for Discrete Optimization

用于离散优化的新机器学习方法

基本信息

  • 批准号:
    RGPIN-2020-06560
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Automated decision-making is one of the pillars of Artificial Intelligence (AI). Discrete Optimization (DO) solvers are powerful tools that can prescribe near-optimal decisions to problems with many thousands of variables and constraints. These optimization problems appear in a variety of domains, such as maritime inventory routing in global bulk shipping, kidney exchanges in healthcare and load management in power systems. In recent years, both the complexity and frequency at which discrete optimization problems must be solved have increased substantially, challenging the capabilities of current solvers. On the other hand, dramatic advances in Deep Learning (DL) have enabled the adoption of Machine Learning (ML) in domains with complex data of combinatorial nature, such as molecules and proteins, social and knowledge graphs, and call graphs of computer programs. The proposed research program aims at establishing principles, methods, and datasets that will streamline the process of algorithm design for discrete optimization through ML and DL. With the right graph-based DL models, the rich data and solutions produced by classical algorithms become key to ushering the next large leap in the performance of discrete optimization solvers. Consider the maritime inventory routing problem, where a set of ships are to be allocated goods and assigned international routes so as to satisfy demand at minimum cost over extended time periods. Even modestly sized instances of this problem cannot be solved to optimality within days by a state-of-the-art Mixed Integer Programming (MIP) solver, despite substantial advances in MIP solving in the past two decades. On the other hand, many emerging applications require solving similar optimization problems very frequently. For example, in ride-sharing services, drivers must be dynamically assigned to riders. While the drivers, riders, their locations and request times vary, the underlying mathematical model for this assignment problem does not, giving rise to similar optimization problems that must be solved in near real-time. Solvers, however, process each new problem instance de novo, even when they have already encountered many similar instances in the past. Both of these game-changing aspects-increased complexity and high frequency-bring about a wealth of data that goes mostly unexploited in the optimization process. Highly complex problems require many iterations, thus generating solving traces that could inform subsequent iterations. High-frequency problems offer data in the form of multiple instances of the same mathematical problem, which could be leveraged to produce an algorithm that is efficient for that distribution of instances. We will improve exact (tree search) and heuristic algorithms with data-driven ML approaches across three complementary thrusts: 1) Deep Graph Embeddings for DO Problems; 2) Sample-Efficient Learning Methods for DO; 3) New Datasets and Domains for Learning in DO.
自动决策是人工智能(AI)的支柱之一。离散优化(DO)求解器是一种强大的工具,可以为具有数千个变量和约束的问题提供接近最优的决策。这些优化问题出现在各种领域,如全球散装运输中的海运库存路由,医疗保健中的肾脏交换和电力系统中的负载管理。近年来,离散优化问题必须解决的复杂性和频率都大幅增加,对当前求解器的能力提出了挑战。另一方面,深度学习(DL)的巨大进步使机器学习(ML)能够在具有组合性质的复杂数据的领域中采用,例如分子和蛋白质,社会和知识图以及计算机程序的调用图。拟议的研究计划旨在建立原则,方法和数据集,以简化通过ML和DL进行离散优化的算法设计过程。通过正确的基于图形的DL模型,经典算法产生的丰富数据和解决方案成为离散优化求解器性能下一次飞跃的关键。考虑海运库存路由问题,其中一组船舶将被分配货物和指定的国际航线,以便在延长的时间段内以最小的成本满足需求。即使是中等规模的情况下,这个问题不能解决的最佳状态的最先进的混合编程(MIP)求解器在几天内,尽管MIP解决在过去的二十年中取得了重大进展。另一方面,许多新兴的应用程序需要解决类似的优化问题非常频繁。例如,在拼车服务中,司机必须动态分配给乘客。虽然司机、乘客、他们的位置和请求时间不同,但这个分配问题的基本数学模型却不同,这就产生了类似的优化问题,必须近实时地解决。然而,求解器重新处理每个新的问题实例,即使他们在过去已经遇到过许多类似的实例。这两个改变游戏规则的方面增加的复杂性和高频率带来了大量的数据,这些数据在优化过程中大多未被利用。高度复杂的问题需要多次迭代,从而生成可以通知后续迭代的解决轨迹。高频问题以同一数学问题的多个实例的形式提供数据,可以利用这些数据来生成对该实例分布有效的算法。我们将通过数据驱动的ML方法在三个互补的方面改进精确(树搜索)和启发式算法:1)用于DO问题的深度图嵌入; 2)用于DO的样本有效学习方法; 3)用于DO学习的新数据集和域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Khalil, Elias其他文献

Khalil, Elias的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Khalil, Elias', 18)}}的其他基金

New Machine Learning Approaches for Discrete Optimization
用于离散优化的新机器学习方法
  • 批准号:
    RGPIN-2020-06560
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
New Machine Learning Approaches for Discrete Optimization
用于离散优化的新机器学习方法
  • 批准号:
    RGPIN-2020-06560
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
New Machine Learning Approaches for Discrete Optimization
用于离散优化的新机器学习方法
  • 批准号:
    DGECR-2020-00535
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

High-Valent Iron-Oxo Species for Activation of Strong CH Bonds: New Designs with Novel Ab Initio Methods and Machine Learning
用于激活强CH键的高价铁氧物种:采用新颖的从头算方法和机器学习的新设计
  • 批准号:
    24K17694
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
  • 批准号:
    MR/X033880/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Fellowship
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
  • 批准号:
    23H01276
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New fast beam loss monitor system for Diamon-ll and machine learning applications
适用于 Diamon-ll 和机器学习应用的新型快速光束损失监测系统
  • 批准号:
    2878859
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Studentship
SBIR Phase I: Proximate Wind Forecasts: A New Machine Learning Approach to Increasing Wind Energy Production
SBIR 第一阶段:风力预测:增加风能产量的新机器学习方法
  • 批准号:
    2309367
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Magnetic Resonances in Nonlinear Dielectric Nanostructures: New Light-Matter Interactions and Machine Learning Enhanced Design
非线性介电纳米结构中的磁共振:新的光-物质相互作用和机器学习增强设计
  • 批准号:
    2240562
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
SBIR Phase I: Predictive Analytics and Machine Learning Modeling for New Patient Cancer Referrals
SBIR 第一阶段:针对新癌症患者转诊的预测分析和机器学习建模
  • 批准号:
    2304498
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
A New Machine Learning Framework for Single-Cell Multi-Omics Bioinformatics
单细胞多组学生物信息学的新机器学习框架
  • 批准号:
    2405416
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Impact of oceanic mesoscale eddies on the productivity of the western Bay of Bengal: contribution of new EO data and machine learning
海洋中尺度涡旋对孟加拉湾西部生产力的影响:新的地球观测数据和机器学习的贡献
  • 批准号:
    2886218
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了