A New Pipeline for Detailed Large Scale Geometry Acquisition and Analysis

用于详细的大规模几何采集和分析的新流程

基本信息

  • 批准号:
    RGPIN-2021-03477
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

3D acquisition is often compared with its 2D counterpart: while 2D acquisition is better, cheaper and more versatile than ever yielding very large datasets and a democratization of image processing research, unfortunately not the same can be said of 3D acquisition: It still requires expensive equipment, significant post-processing and operator training. Furthermore, accurate large-scale acquisition requires significant planning, logistics and automation that currently does not have efficient solutions. This is not for a lack of demand as 3D acquisition market is projected to exceed 6.22 billion USD by 2023 and yet, scanning large objects or areas with high resolution is still very expensive and time consuming despite having practical applications in nearly all fields: AR/VR, robotics, manufacturing , quality control and testing, civil engineering, infrastructure inspection, aeronautics industry, defense, mining, climate change to name a few. In this program we are planning to bridge the gap and propose new methodology for the 3D acquisition pipeline that can bring the elusive 3D acquisition pipeline into the mainstream, both consumer as well as industrial mainstream. We propose new technologies from improving sensor reliability and accuracy, for stitching together thousands of geometric pieces into one unified model, planning and automation of the 3D acquisition using autonomous agents such as drones and/or robots. We propose methods that can do 3D acquisition of objects that undergo small deformations during scanning such as from people breathing during acquisition or animals moving or objects sch as trees being deformed by wind. Time lapse scanning of objects can provide a unique insight into the physical structures scanned as well as the type of forces that might have been applied to them over time. We propose a novel reverse physics framework where using the FEM methods a smart difference operator can be applied that detects structural changes in terms of missing or added geometry (i.e. a piece of the objects fell, or a part of the object bulged) as well as in terms of elastic and plastic deformation and predict further the deformation trajectory. This can be very useful for infrastructure maintenance, where acquisition automation and accurate analysis can help detect early serious problems. In addition to the direct use of these technologies in a fast-growing market, this work has important human safety application in civil engineering and mining such as civil infrastructure maintenance, interior of nuclear power plants and exploring mines. Additionally, it will generate new research and unique datasets that can be further used to solve other problems thus the community and Canadian industry as a whole will greatly benefit from this research.
3D采集经常与2D采集进行比较:虽然2D采集比以往任何时候都更好、更便宜、更通用,可以产生非常大的数据集和图像处理研究的民主化,但不幸的是,3D采集就不一样了:它仍然需要昂贵的设备、大量的后处理和操作人员培训。此外,准确的大规模采集需要大量的规划、物流和自动化,目前还没有有效的解决方案。这并不是因为缺乏需求,因为3D采集市场预计到2023年将超过62.2亿美元,然而,尽管在几乎所有领域都有实际应用,但以高分辨率扫描大型物体或区域仍然非常昂贵和耗时:AR/VR,机器人,制造,质量控制和测试,土木工程,基础设施检查,航空工业,国防,采矿,气候变化等等。在该计划中,我们计划弥合差距,并提出3D采集管道的新方法,可以将难以捉摸的3D采集管道带入主流,包括消费者和工业主流。我们提出了提高传感器可靠性和准确性的新技术,用于将数千个几何块拼接成一个统一的模型,使用无人机和/或机器人等自主代理进行3D采集的规划和自动化。我们提出的方法可以对扫描过程中发生微小变形的物体进行3D采集,例如在采集过程中呼吸的人或移动的动物或被风变形的树木等物体。对物体的延时扫描可以提供对扫描的物理结构的独特见解,以及随着时间的推移可能施加在它们身上的力的类型。我们提出了一种新的反向物理框架,其中使用FEM方法可以应用智能差分算子来检测缺失或添加几何形状的结构变化(即一块物体掉落,或物体的一部分凸起)以及弹性和塑性变形,并进一步预测变形轨迹。这对于基础设施维护非常有用,其中获取自动化和准确的分析可以帮助检测早期的严重问题。除了在快速增长的市场中直接使用这些技术外,这项工作还在土木工程和采矿方面具有重要的人类安全应用,例如民用基础设施维护,核电站内部和勘探矿山。此外,它将产生新的研究和独特的数据集,可以进一步用于解决其他问题,因此社区和加拿大工业作为一个整体将大大受益于这项研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Popa, Tiberiu其他文献

High temperature water gas shift catalysts with alumina
  • DOI:
    10.1016/j.apcata.2010.02.021
  • 发表时间:
    2010-05-15
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Popa, Tiberiu;Xu, Guoqing;Argyle, Morris D.
  • 通讯作者:
    Argyle, Morris D.
Markerless garment capture
  • DOI:
    10.1145/1360612.1360698
  • 发表时间:
    2008-08-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Bradley, Derek;Popa, Tiberiu;Boubekeur, Tamy
  • 通讯作者:
    Boubekeur, Tamy
Highly selective and stable Cu/SiO2 catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol
  • DOI:
    10.1016/j.apcatb.2017.02.072
  • 发表时间:
    2017-07-15
  • 期刊:
  • 影响因子:
    22.1
  • 作者:
    Ding, Jie;Popa, Tiberiu;Zhong, Qin
  • 通讯作者:
    Zhong, Qin

Popa, Tiberiu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Popa, Tiberiu', 18)}}的其他基金

A New Pipeline for Detailed Large Scale Geometry Acquisition and Analysis
用于详细的大规模几何采集和分析的新流程
  • 批准号:
    RGPIN-2021-03477
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
A garment acquisition pipeline for game asset retargetting
用于游戏资产重新定位的服装收购渠道
  • 批准号:
    561038-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alliance Grants
Computer aided tools for automation of industrial inspections
用于工业检查自动化的计算机辅助工具
  • 批准号:
    535746-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants
A garment acquisition pipeline for game asset retargetting
用于游戏资产重新定位的服装收购渠道
  • 批准号:
    561038-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alliance Grants
Next generation motion controller and synthesis for game characters
下一代运动控制器和游戏角色合成
  • 批准号:
    505237-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants
High-fidelity, directable animation transfer using facial decomposition on optimized micro-sequences
使用优化微序列上的面部分解进行高保真、可定向动画传输
  • 批准号:
    522014-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants
Multimodal synchronous spatial-temporal acquisition of facial features and tongue for medical applications
用于医疗应用的面部特征和舌头的多模态同步时空采集
  • 批准号:
    RGPIN-2014-05884
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Computer aided tools for automation of industrial inspections**
用于工业检查自动化的计算机辅助工具**
  • 批准号:
    535746-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants
Next generation motion controller and synthesis for game characters
下一代运动控制器和游戏角色合成
  • 批准号:
    505237-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants
High-fidelity, directable animation transfer using facial decomposition on optimized micro-sequences
使用优化微序列上的面部分解进行高保真、可定向动画传输
  • 批准号:
    522014-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

FAST连续观测数据处理的pipeline开发
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
云台40米射电望远镜脉冲星后端实时pipeline关键技术研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    37 万元
  • 项目类别:
    地区科学基金项目
FAST高性能Pipeline关键技术研究
  • 批准号:
    U1731125
  • 批准年份:
    2017
  • 资助金额:
    46.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

Multi-platform pipeline for engineering human knee joint function
用于工程人体膝关节功能的多平台管道
  • 批准号:
    EP/X039870/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Grant
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
  • 批准号:
    2340075
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
TUBERSCAN-VENTURE: Delivering a commercially-viable, non-destructive, data driven pipeline to quantify root crops during growth to realise maximum marketable yield and help reduce waste, contributing to net zero emissions
TUBERSCAN-VENTURE:提供商业上可行的、非破坏性的、数据驱动的管道,以量化生长过程中的块根作物,以实现最大的市场产量并帮助减少浪费,从而实现净零排放
  • 批准号:
    10092039
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative R&D
Pipeline for Cybersecurity Careers Aligned to National Standards
符合国家标准的网络安全职业渠道
  • 批准号:
    2350310
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
SHF: Medium: Reasoning about Multiplicity in the Machine Learning Pipeline
SHF:Medium:机器学习管道中多重性的推理
  • 批准号:
    2402833
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
South Yorkshire Net Zero Investment Pipeline
南约克郡净零投资管道
  • 批准号:
    10088803
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative R&D
Multi-platform pipeline for engineering human knee joint function
用于工程人体膝关节功能的多平台管道
  • 批准号:
    EP/X04002X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Grant
AIPPN: Interpretable AI enabled Molecular Identification Pipeline for Plant-parasitic Nematodes
AIPPN:可解释的人工智能支持植物寄生线虫分子识别管道
  • 批准号:
    10077647
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative R&D
Improving understanding of lung immunity in tuberculosis to establish a diverse, innovative TB vaccine pipeline targeting mucosal immunity
提高对结核病肺免疫的了解,建立针对粘膜免疫的多样化、创新型结核疫苗管道
  • 批准号:
    10068466
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    EU-Funded
Automating data acquisition and data processing pipeline via artificial intelligence and machine learning approaches to allow at-home use of a novel breast cancer screening method employing bra-based elastography imaging.
通过人工智能和机器学习方法自动化数据采集和数据处理流程,以便在家使用基于胸罩的弹性成像成像的新型乳腺癌筛查方法。
  • 批准号:
    486956
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了