Solid State Quantum Simulation: From Hyperbolic Space to Emergent Spin-3/2 Fermions
固态量子模拟:从双曲空间到涌现自旋 3/2 费米子
基本信息
- 批准号:RGPIN-2021-02534
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
What are the basic truths we know about our world? For one, humankind believed for a long time that space is flat. And to a good approximation, it is: If you draw a triangle, the sum of the interior angles is 180 degrees. Later we discovered that our Earth is actually curved. If you were to draw a very large triangle on Earth's surface, its sum of interior angles would be larger than 180 degrees. Mathematicians call this a positive curvature. They also realized that a much more intriguing geometry exists, one that is called negatively curved, where the sum of interior angles in a triangle can be less than 180 degrees, even zero! This space, called hyperbolic space, has many features that evade our intuition, but Mathematicians love it because of its beauty, and Physicists realized over the last decades that many properties of our physical world may secretly be related to hyperbolic space. Another such truth, although you might not think about it often, is the existence of electrons --- those subatomic charged particles that are responsible for electronic current in solids and that populate the electronic shell of atoms. Electrons have an intrinsic property, called their spin quantum number, which takes two values, commonly called "up" or "down", or "+1/2" and "-1/2". (Because of the latter, we say that the electron has spin 1/2.) The properties of electrical currents and all chemical elements around us result from the fact that the electron can appear in these two states. Physicists have long searched for electron-like particles with spin 3/2, which have four states, called "+3/2", "+1/2", "-1/2", and "-3/2", but no fundamental particle with this property was found. This research project will investigate what would happen if the world would be negatively curved or if electrons had spin 3/2. We do this to satisfy our curiosity, of course, but the outcome of such an analysis will also affect our understanding of the fundamental Laws of Physics and could have technological applications. The last few years have seen two experimental breakthroughs that motivate this project. One is the realization of a hyperbolic lattice with superconducting resonators, which is a heptagonal tiling that only exists in negatively curved space. Particles moving on such a lattice think they are in hyperbolic space. The other is the synthesization of topological semimetal materials, where the charge carrying particles act like electrons with spin 3/2. Both settings are called "quantum simulations", because they create an artifical world in order to experimentally study its properties. Specifically, we will analyse how the physics of many particles is altered by hyperbolic space and we will theoretically help to create two more experimental platforms for their investigation: electrical circuits and ultracold quantum gases. We will investigate how the interactions between spin-3/2 particles alter the properties of solids and how this can be measured in experiment.
关于这个世界,我们所知道的基本真理是什么?首先,很长一段时间以来,人类都认为太空是平坦的。一个很好的近似是,如果你画一个三角形,内角和是180度。后来我们发现地球实际上是弯曲的。如果你在地球表面画一个非常大的三角形,它的内角之和将大于180度。数学家称之为正曲率。他们还意识到存在一种更有趣的几何形状,一种被称为负弯曲的几何形状,其中三角形的内角之和可以小于180度,甚至为零!这个空间被称为双曲空间,它有许多我们的直觉无法理解的特征,但数学家们喜欢它,因为它的美丽,物理学家在过去的几十年里意识到,我们物理世界的许多特性可能秘密地与双曲空间有关。另一个这样的事实,虽然你可能不经常想到,是电子的存在——这些亚原子带电粒子负责固体中的电流,并填充原子的电子壳层。电子有一种固有属性,称为自旋量子数,它有两个值,通常称为“上”或“下”,或“+1/2”和“-1/2”。(因为后者,我们说电子自旋为1/2。)电流和我们周围的所有化学元素的特性都是由于电子能以这两种状态出现。物理学家长期以来一直在寻找自旋为3/2的类电子粒子,这种粒子有四种状态,分别是“+3/2”、“+1/2”、“-1/2”和“-3/2”,但没有发现具有这种性质的基本粒子。这个研究项目将调查如果世界是负弯曲的,或者如果电子的自旋是3/2,会发生什么。当然,我们这样做是为了满足我们的好奇心,但这种分析的结果也会影响我们对基本物理定律的理解,并可能有技术应用。在过去的几年里,有两个实验性的突破激励了这个项目。一是超导谐振器双曲晶格的实现,这是一个只存在于负弯曲空间的七面平铺。在这样的晶格上运动的粒子认为它们在双曲空间中。另一种是合成拓扑半金属材料,其中携带电荷的粒子像自旋为3/2的电子一样。这两种设置都被称为“量子模拟”,因为它们创造了一个人工世界,以便通过实验研究其特性。具体来说,我们将分析许多粒子的物理特性是如何被双曲空间改变的,我们将在理论上帮助为他们的研究创造两个更多的实验平台:电路和超冷量子气体。我们将研究自旋为3/2的粒子之间的相互作用如何改变固体的性质,以及如何在实验中测量这一点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Boettcher, Igor其他文献
Optimal measurement of field properties with quantum sensor networks.
使用量子传感器网络对场属性的最佳测量。
- DOI:
10.1103/physreva.103.l030601 - 发表时间:
2021-03-29 - 期刊:
- 影响因子:2.9
- 作者:
Qian, Timothy;Bringewatt, Jacob;Boettcher, Igor;Bienias, Przemyslaw;Gorshkov, Alexey, V - 通讯作者:
Gorshkov, Alexey, V
Crystallography of hyperbolic lattices
- DOI:
10.1103/physrevb.105.125118 - 发表时间:
2022-03-15 - 期刊:
- 影响因子:3.7
- 作者:
Boettcher, Igor;Gorshkov, Alexey, V;Thomale, Ronny - 通讯作者:
Thomale, Ronny
Selberg trace formula in hyperbolic band theory
- DOI:
10.1103/physreve.106.034114 - 发表时间:
2022-09-08 - 期刊:
- 影响因子:2.4
- 作者:
Attar, Adil;Boettcher, Igor - 通讯作者:
Boettcher, Igor
Anisotropy induces non-Fermi-liquid behavior and nematic magnetic order in three-dimensional Luttinger semimetals
- DOI:
10.1103/physrevb.95.075149 - 发表时间:
2017-02-27 - 期刊:
- 影响因子:3.7
- 作者:
Boettcher, Igor;Herbut, Igor F. - 通讯作者:
Herbut, Igor F.
Circuit Quantum Electrodynamics in Hyperbolic Space: From Photon Bound States to Frustrated Spin Models
- DOI:
10.1103/physrevlett.128.013601 - 发表时间:
2022-01-03 - 期刊:
- 影响因子:8.6
- 作者:
Bienias, Przemyslaw;Boettcher, Igor;Gorshkov, Alexey, V - 通讯作者:
Gorshkov, Alexey, V
Boettcher, Igor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Boettcher, Igor', 18)}}的其他基金
Solid State Quantum Simulation: From Hyperbolic Space to Emergent Spin-3/2 Fermions
固态量子模拟:从双曲空间到涌现自旋 3/2 费米子
- 批准号:
RGPIN-2021-02534 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Solid State Quantum Simulation: From Hyperbolic Space to Emergent Spin-3/2 Fermions
固态量子模拟:从双曲空间到涌现自旋 3/2 费米子
- 批准号:
DGECR-2021-00043 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
微波有源Scattering dark state粒子的理论及应用研究
- 批准号:61701437
- 批准年份:2017
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Solid-state quantum navigation and timekeeping
职业:固态量子导航和计时
- 批准号:
2339862 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
ExpandQISE: Track 2: A Quantum Science Education and Research Program for HBCUs: Exotic Physics and Applications of Solid-State Qubits
ExpandQISE:轨道 2:HBCU 的量子科学教育和研究计划:奇异物理学和固态量子位的应用
- 批准号:
2329067 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Creation of quantum molecular electronics by fusion of advanced materials chemistry a nd quantum solid-state physics
通过先进材料化学和量子固体物理学的融合创造量子分子电子学
- 批准号:
23K20039 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Fund for the Promotion of Joint International Research (International Leading Research )
Thermal effects in solid state quantum computing
固态量子计算中的热效应
- 批准号:
2887316 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Studentship
Solid state optical nonlinearities for quantum information processing
用于量子信息处理的固态光学非线性
- 批准号:
2887452 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Studentship
ExpandQISE: Track 1: Micron Scale Solid State Quantum Sensors Optimized through Machine Learning
ExpandQISE:轨道 1:通过机器学习优化微米级固态量子传感器
- 批准号:
2329242 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Designing solid-state quantum sensors for brain imaging
设计用于脑成像的固态量子传感器
- 批准号:
568637-2021 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Alliance Grants
Interfacing solid state single emitters with atomic quantum memories
将固态单发射器与原子量子存储器连接
- 批准号:
2742058 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Studentship
Quantum interface engineering with solid-state spins and photons
固态自旋和光子的量子界面工程
- 批准号:
2742534 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Studentship
Nanophotonic enhancement of solid-state quantum emitters
固态量子发射器的纳米光子增强
- 批准号:
2766903 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Studentship