Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.

复杂时态系统的统计推断:非平稳性、高维性及其他。

基本信息

  • 批准号:
    RGPIN-2021-02715
  • 负责人:
  • 金额:
    $ 2.7万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Non-stationarity, high-dimensionality and nonlinearity are widely recognized as the three major challenges for time series analysis in the big data era. These complicated data structures arise frequently when a large number of stochastic processes are simultaneously recorded over a relatively long period of time. The complexity of the data prevents researchers and practitioners from using the classical time series approaches, such as the stationary ARMA theory and methodology. The long-term objective of the proposed research is two-fold. First, a systematic theoretical foundation for the modelling and inference of a large class of high-dimensional and non-stationary (HDNS) time series in both time and spectral domains will be established from a nonlinear system point of view. Second, based on the aforementioned theoretical foundation, a robust, adaptive and computationally efficient methodological toolbox for the estimation, inference and prediction of HDNS temporal systems stemmed from various important applications will be built. In the short term, theoretically, the main focus will be on establishing systematic Gaussian approximation theory and auto-regressive approximation theory for HDNS time series; methodologically, the focus will be on nonparametric statistical inference in linear, bilinear and nonlinear time-frequency analysis with applications to signal processing. Nowadays, technological innovations have made it possible to collect a massive amount of data with complex structures over a relatively long period of time. I see a great demand, opportunity and challenge for statistical analysis of HDNS time series emerging from various important fields of practice. Therefore, statistical theory and methodologies should progress with this demand. However, a unified statistical theory for HDNS time series analysis is still lacking and robust, accurate and computationally efficient methodological toolboxes with rigorous and accurate stochastic uncertainty control barely exist in many applications . I believe that the proposed framework from the nonlinear system point of view will provide an important theoretical and methodological basis for HDNS time series analysis in many scientific disciplines.
非平稳性、高维性和非线性被广泛认为是大数据时代时间序列分析面临的三大挑战。当大量的随机过程在相对长的时间段内同时记录时,这些复杂的数据结构经常出现。数据的复杂性使得研究人员和实践者无法使用经典的时间序列方法,如平稳阿尔马理论和方法。拟议研究的长期目标是双重的。首先,从非线性系统的角度来看,一个系统的理论基础的建模和推理的一大类高维和非平稳(HDNS)的时间序列在时间和频谱域将建立。其次,基于上述理论基础,将建立一个强大的,自适应的和计算效率高的方法工具箱,用于估计,推理和预测源于各种重要应用的HDNS时态系统。在短期内,理论上,主要重点将是建立系统的高斯近似理论和自回归近似理论的HDNS时间序列;方法上,重点将是非参数统计推断的线性,双线性和非线性时频分析与信号处理的应用。如今,技术创新使得在相对较长的时间内收集具有复杂结构的大量数据成为可能。我看到了巨大的需求,机会和挑战的统计分析HDNS时间序列出现在各个重要的实践领域。因此,统计理论和方法也应该随着这一需求而发展。然而,一个统一的统计理论HDNS时间序列分析仍然缺乏和强大的,准确的和计算效率高的方法工具箱,严格和准确的随机不确定性控制几乎不存在于许多应用中。我相信,从非线性系统的角度来看,所提出的框架将提供一个重要的理论和方法基础,在许多科学学科的HDNS时间序列分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhou, Zhou其他文献

A visualized MAC nomogram online predicts the risk of three-month mortality in Chinese elderly aneurysmal subarachnoid hemorrhage patients undergoing endovascular coiling.
  • DOI:
    10.1007/s10072-023-06777-x
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Zhou, Zhou;Lu, Wei;Zhang, Cheng;Xiang, Lan;Xiang, Liang;Chen, Chen;Wang, BiJun;Guo, LeHeng;Shan, YaJie;Li, XueMei;Zhao, Zheng;Dai, XiaoMing;Zou, JianJun;Zhao, ZhiHong
  • 通讯作者:
    Zhao, ZhiHong
Distributed Modeling and Control of Large-Scale Highly Flexible Solar-Powered UAV
大型高柔性太阳能无人机分布式建模与控制
  • DOI:
    10.1155/2015/195390
  • 发表时间:
    2015-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Rui;Zhou, Zhou;Zhu, Xiaoping;Xu, Xiaoping
  • 通讯作者:
    Xu, Xiaoping
Cyr61 participates in the pathogenesis of rheumatoid arthritis by promoting proIL-1beta production by fibroblast-like synoviocytes through an AKT-dependent NF-kappaB signaling pathway.
Cyr61 通过 AKT 依赖性 NF-kappaB 信号通路促进成纤维样滑膜细胞产生 proIL-1beta,从而参与类风湿关节炎的发病机制。
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Zhou, Zhou;Shen, Baihua;Xiao, Lianbo;Li, Ningli
  • 通讯作者:
    Li, Ningli
Thyroid Hormone Promotes Neuronal Differentiation of Embryonic Neural Stem Cells by Inhibiting STAT3 Signaling Through TR alpha 1
甲状腺激素通过 TR α 1 抑制 STAT3 信号传导,促进胚胎神经干细胞的神经元分化
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Chen, Chunhai;Yu, Zhengping;Zhou, Zhou;Zhong, Min;Zhang, Yanwen;Li, Maoquan;Zhang, Lei;Qu, Mingyue;Yang, Ju;Wang, Yuan
  • 通讯作者:
    Wang, Yuan
Reprimo (RPRM) as a Potential Preventive and Therapeutic Target for Radiation-Induced Brain Injury via Multiple Mechanisms.
  • DOI:
    10.3390/ijms242317055
  • 发表时间:
    2023-12-02
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Ye, Zhujing;Wang, Jin;Shi, Wenyu;Zhou, Zhou;Zhang, Yarui;Wang, Jingdong;Yang, Hongying
  • 通讯作者:
    Yang, Hongying

Zhou, Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhou, Zhou', 18)}}的其他基金

Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
  • 批准号:
    RGPIN-2021-02715
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
  • 批准号:
    RGPAS-2021-00036
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
  • 批准号:
    RGPAS-2021-00036
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Nonparametric statistical inference under complex temporal dynamics
复杂时间动态下的非参数统计推断
  • 批准号:
    RGPIN-2015-04927
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric statistical inference under complex temporal dynamics
复杂时间动态下的非参数统计推断
  • 批准号:
    RGPIN-2015-04927
  • 财政年份:
    2018
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric statistical inference under complex temporal dynamics
复杂时间动态下的非参数统计推断
  • 批准号:
    RGPIN-2015-04927
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric statistical inference under complex temporal dynamics
复杂时间动态下的非参数统计推断
  • 批准号:
    RGPIN-2015-04927
  • 财政年份:
    2016
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric statistical inference under complex temporal dynamics
复杂时间动态下的非参数统计推断
  • 批准号:
    RGPIN-2015-04927
  • 财政年份:
    2015
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical inference of non-stationary time series
非平稳时间序列的统计推断
  • 批准号:
    387336-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical inference of non-stationary time series
非平稳时间序列的统计推断
  • 批准号:
    387336-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
  • 批准号:
    2311064
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Novel and Rigorous Statistical Learning and Inference for Comparative Effectiveness Research with Complex Data
复杂数据比较有效性研究的新颖而严格的统计学习和推理
  • 批准号:
    10635323
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
  • 批准号:
    RGPIN-2021-02715
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Inference and Modelling for Complex Data
复杂数据的统计推断和建模
  • 批准号:
    RGPIN-2018-06459
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Statistical Modelling and Inference with High-Dimensional, Complex Data
高维、复杂数据的统计建模和推理主题
  • 批准号:
    RGPIN-2017-05720
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
  • 批准号:
    RGPAS-2021-00036
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Statistical inference and planning for complex infectious disease systems
复杂传染病系统的统计推断和规划
  • 批准号:
    RGPIN-2015-04779
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Excellence in Research: Statistical Network Modeling and Inference for Complex Data
卓越的研究:复杂数据的统计网络建模和推理
  • 批准号:
    2100729
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Statistical Inference and Modelling for Complex Data
复杂数据的统计推断和建模
  • 批准号:
    RGPIN-2018-06459
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modelling and Inference with Complex Data
复杂数据的统计建模和推理
  • 批准号:
    RGPIN-2016-04346
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了