Data-adaptive causal inference methods for effect modification
用于效果修正的数据自适应因果推理方法
基本信息
- 批准号:RGPIN-2021-03019
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
"Causal inference" is the study of cause and effect. For instance, we may be interested in knowing whether a treatment has an impact on lessening the symptoms of a disease. Statistically speaking, we can estimate the impact of treatments on average in a given group of individuals. But it may be that some individuals are more greatly impacted by a treatment than others. Therefore, we may also be interested in evaluating which characteristics of the individuals in the group modify the effects for the individual. This knowledge can guide decision making by helping us identify which individuals will most benefit from a treatment, and which individuals will not obtain a benefit and may even be harmed by a treatment. My research program is focused on the development of statistical methods for identifying individual characteristics that can help predict effects for the individual. The data that I use come from studies where treatments were not randomly assigned to individuals (called "observational studies"). This leads to a major challenge - there are often relationships between treatments that individuals "choose" and their general state. Therefore, I focus on statistical approaches that can robustly correct for these relationships in order to estimate effects. Another focus in my research is the development of methods that can "automatically" discover the characteristics that modify effects in individuals. Essentially, this involves letting an algorithm crunch the data and determine which characteristics are related to different sized effects. My specific contributions involve the development of methods for different data structures and types. For example, specific challenges arise when individuals change their treatments over time or when characteristics can influence effects in complex ways. Because they are generally useful for any investigation of individual effects, the methods I develop can be used in health, economics, policy and engineering research across academia, government, and industry.
“因果推理”是对因果关系的研究。例如,我们可能有兴趣知道一种治疗方法是否对减轻疾病症状有影响。从统计学上讲,我们可以估计治疗对特定人群的平均影响。但可能有些人比其他人受到治疗的影响更大。因此,我们也可能对评估群体中个体的哪些特征会改变个体的效应感兴趣。这些知识可以通过帮助我们确定哪些人将从治疗中获益最多,哪些人将不会获得益处,甚至可能受到治疗的伤害来指导决策。我的研究计划是专注于统计方法的发展,以确定个人特征,可以帮助预测对个人的影响。我所使用的数据来自于那些治疗不是随机分配给个体的研究(称为“观察性研究”)。这带来了一个重大挑战--个人“选择”的治疗方法与他们的总体状态之间往往存在关系。因此,我专注于统计方法,可以稳健地纠正这些关系,以估计影响。我研究的另一个重点是开发可以“自动”发现改变个体效应的特征的方法。从本质上讲,这涉及到让算法处理数据,并确定哪些特征与不同大小的效应相关。我的具体贡献包括为不同的数据结构和类型开发方法。例如,当个人随着时间的推移改变他们的治疗方法时,或者当特征可以以复杂的方式影响效果时,就会出现特定的挑战。因为它们通常对任何个体效应的调查都很有用,所以我开发的方法可以用于学术界、政府和工业界的健康、经济、政策和工程研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Schnitzer, Mireille其他文献
Disability in Systemic Sclerosis - A Longitudinal Observational Study
- DOI:
10.3899/jrheum.100635 - 发表时间:
2011-04-01 - 期刊:
- 影响因子:3.9
- 作者:
Schnitzer, Mireille;Hudson, Marie;Steele, Russell - 通讯作者:
Steele, Russell
Schnitzer, Mireille的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Schnitzer, Mireille', 18)}}的其他基金
Data-adaptive causal inference methods for effect modification
用于效果修正的数据自适应因果推理方法
- 批准号:
RGPIN-2021-03019 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Data-adaptive learning in causal inference for high-dimensional data structures
高维数据结构因果推理中的数据自适应学习
- 批准号:
RGPIN-2015-04883 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Data-adaptive learning in causal inference for high-dimensional data structures
高维数据结构因果推理中的数据自适应学习
- 批准号:
RGPIN-2015-04883 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Data-adaptive learning in causal inference for high-dimensional data structures
高维数据结构因果推理中的数据自适应学习
- 批准号:
RGPIN-2015-04883 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Data-adaptive learning in causal inference for high-dimensional data structures
高维数据结构因果推理中的数据自适应学习
- 批准号:
477882-2015 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Data-adaptive learning in causal inference for high-dimensional data structures
高维数据结构因果推理中的数据自适应学习
- 批准号:
RGPIN-2015-04883 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Data-adaptive learning in causal inference for high-dimensional data structures
高维数据结构因果推理中的数据自适应学习
- 批准号:
477882-2015 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Data-adaptive learning in causal inference for high-dimensional data structures
高维数据结构因果推理中的数据自适应学习
- 批准号:
RGPIN-2015-04883 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Model selection in marginal structural models for dynamic regimes
动态机制边际结构模型中的模型选择
- 批准号:
379178-2009 - 财政年份:2011
- 资助金额:
$ 1.75万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Model selection in marginal structural models for dynamic regimes
动态机制边际结构模型中的模型选择
- 批准号:
379178-2009 - 财政年份:2010
- 资助金额:
$ 1.75万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
相似国自然基金
下一代无线通信系统自适应调制技术及跨层设计研究
- 批准号:60802033
- 批准年份:2008
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
由蝙蝠耳轮和鼻叶推导新型仿生自适应波束模型的研究
- 批准号:10774092
- 批准年份:2007
- 资助金额:39.0 万元
- 项目类别:面上项目
相似海外基金
Does Tobacco Social Media Marketing Alter Adolescent Risk Perceptions and Use? Longitudinal Data-Adaptive Estimators and Causal Inference to Enhance Understanding
烟草社交媒体营销是否会改变青少年的风险认知和使用?
- 批准号:
10804979 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Data-adaptive causal inference methods for effect modification
用于效果修正的数据自适应因果推理方法
- 批准号:
RGPIN-2021-03019 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Data-adaptive learning in causal inference for high-dimensional data structures
高维数据结构因果推理中的数据自适应学习
- 批准号:
RGPIN-2015-04883 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Data-adaptive learning in causal inference for high-dimensional data structures
高维数据结构因果推理中的数据自适应学习
- 批准号:
RGPIN-2015-04883 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Development of high-dimensional data-adaptive causal inference methods to unravel the role of genetics in determining heart rhythm
开发高维数据自适应因果推理方法来揭示遗传学在确定心律中的作用
- 批准号:
2083410 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Studentship
Data-adaptive learning in causal inference for high-dimensional data structures
高维数据结构因果推理中的数据自适应学习
- 批准号:
RGPIN-2015-04883 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Data-adaptive learning in causal inference for high-dimensional data structures
高维数据结构因果推理中的数据自适应学习
- 批准号:
477882-2015 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Accelerator Supplements