Learning representations from heterogeneous data for digital health
从数字健康的异构数据中学习表示
基本信息
- 批准号:RGPIN-2021-03297
- 负责人:
- 金额:$ 4.66万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Molecular biomarkers, including genes, miRNAs, LncRNAs, circRNAs, etc., not only help understand the mechanisms of complex human diseases, but also help their diagnosis, prognosis, treatment and drug development. The emerging high throughput technologies generate copious heterogeneous data such as sequence data, expression data, semantic data, and some experimentally verified association(network) data. Although existing machine learning methods can be applied for various prediction tasks from such heterogeneous data, there are some challenges and limitations, as well as some obstacles yet to overcome, including lack of integration of heterogeneous data, lack of balanced training data, and lack of model explanation or intelligibility. In this proposed research program my long-term goal is to develop the novel artificial intelligence models and algorithms for effectively and efficiently learning strong comprehensive representations of biomarkers, drugs and diseases from heterogeneous data while applying them to various prediction tasks, which are key to digital health for precision medicine. To achieve my long-term goal, three specific objectives are designed in this proposal as follows. Objective 1: Developing improved machine learning models for learning representations of biomarkers, drugs and diseases by integrating heterogeneous data; Objective 2: Developing deep neural network models for learning representations of biomarkers, drugs and diseases from heterogeneous data. Objective 3: Developing intelligible machine learning models that can learn the representations of biomarkers, drugs and diseases for interpretable prediction results, so that humans can understand and interpret the outcomes. Our developed models and algorithms will be applied to several prediction tasks such as gene-disease associations, miRNA-disease associations, circRNA-disease associations, LncRNA-disease associations or dug repositioning. This proposed research program will make advances in both artificial intelligence and digital health that will ultimately aid in processing, analyzing, understanding, and exploiting heterogeneous health data. The methods to be developed could also be used by researchers in other areas (natural language processing, image analytics, just to name a few) in guiding their methods and discovering new knowledge through our proposed knowledge translation strategies. Through this proposed research program, three Ph.D., and several M.Sc. and undergraduate students will be trained to gain advanced knowledge in artificial intelligence, digital health, and software development, as well as the problem solving skills in digital health and other fields in which artificial intelligence is indispensable. In addition, high demand in artificial intelligence and digital health combined with my collaborative research approach provides my students with numerous opportunities for working in this exciting multidisciplinary training environment.
分子生物标志物,包括基因、miRNA、LncRNA、circRNA等,不仅有助于了解复杂人类疾病的机制,而且有助于其诊断、预后、治疗和药物开发。新兴的高通量技术产生了大量异构数据,例如序列数据、表达数据、语义数据和一些经过实验验证的关联(网络)数据。尽管现有的机器学习方法可以应用于此类异构数据的各种预测任务,但仍存在一些挑战和局限性,以及一些尚未克服的障碍,包括缺乏异构数据的集成、缺乏平衡的训练数据以及缺乏模型解释或可理解性。在这个拟议的研究项目中,我的长期目标是开发新颖的人工智能模型和算法,以便有效且高效地从异构数据中学习生物标志物、药物和疾病的强大综合表示,同时将其应用于各种预测任务,这是精准医学数字健康的关键。为了实现我的长期目标,本提案设计了以下三个具体目标。目标 1:开发改进的机器学习模型,通过整合异构数据来学习生物标志物、药物和疾病的表示;目标 2:开发深度神经网络模型,用于从异构数据中学习生物标志物、药物和疾病的表示。目标 3:开发可理解的机器学习模型,可以学习生物标志物、药物和疾病的表示,以获得可解释的预测结果,以便人类能够理解和解释结果。我们开发的模型和算法将应用于多种预测任务,例如基因-疾病关联、miRNA-疾病关联、circRNA-疾病关联、LncRNA-疾病关联或挖掘重新定位。这项拟议的研究计划将在人工智能和数字健康方面取得进展,最终将有助于处理、分析、理解和利用异构健康数据。其他领域(自然语言处理、图像分析等)的研究人员也可以使用待开发的方法来指导他们的方法并通过我们提出的知识翻译策略发现新知识。通过这项拟议的研究计划,三名博士和几名硕士获得了博士学位。本科生将接受人工智能、数字健康、软件开发等方面的高级知识,以及数字健康等人工智能不可或缺的领域解决问题的技能。此外,对人工智能和数字健康的高需求加上我的协作研究方法为我的学生提供了在这个令人兴奋的多学科培训环境中工作的大量机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WU, FANGXIANG其他文献
WU, FANGXIANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WU, FANGXIANG', 18)}}的其他基金
Learning representations from heterogeneous data for digital health
从数字健康的异构数据中学习表示
- 批准号:
RGPIN-2021-03297 - 财政年份:2022
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for Complex Network Control and Their Applications for Drug Target Identification from Biomolecular Networks
复杂网络控制算法及其在生物分子网络药物靶标识别中的应用
- 批准号:
RGPIN-2016-05214 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for Complex Network Control and Their Applications for Drug Target Identification from Biomolecular Networks
复杂网络控制算法及其在生物分子网络药物靶标识别中的应用
- 批准号:
RGPIN-2016-05214 - 财政年份:2018
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for Complex Network Control and Their Applications for Drug Target Identification from Biomolecular Networks
复杂网络控制算法及其在生物分子网络药物靶标识别中的应用
- 批准号:
RGPIN-2016-05214 - 财政年份:2017
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Scene Processing With Machine Learnable and Semantically Parametrized Representations RENEWAL
使用机器学习和语义参数化表示进行场景处理 RENEWAL
- 批准号:
MR/Y033884/1 - 财政年份:2025
- 资助金额:
$ 4.66万 - 项目类别:
Fellowship
P-adic Variation of Modular Galois Representations
模伽罗瓦表示的 P 进变分
- 批准号:
2401384 - 财政年份:2024
- 资助金额:
$ 4.66万 - 项目类别:
Continuing Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 4.66万 - 项目类别:
Standard Grant
CAREER: Higgs bundles and Anosov representations
职业:希格斯丛集和阿诺索夫表示
- 批准号:
2337451 - 财政年份:2024
- 资助金额:
$ 4.66万 - 项目类别:
Continuing Grant
Native, non-native or artificial phonetic content for pronunciation education: representations and perception in the case of L2 French
用于发音教育的母语、非母语或人工语音内容:以法语 L2 为例的表征和感知
- 批准号:
24K00093 - 财政年份:2024
- 资助金额:
$ 4.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Unlocking the secrets of modular representations
解开模块化表示的秘密
- 批准号:
FL230100256 - 财政年份:2024
- 资助金额:
$ 4.66万 - 项目类别:
Australian Laureate Fellowships
Career: Learning Multimodal Representations of the Physical World
职业:学习物理世界的多模态表示
- 批准号:
2339071 - 财政年份:2024
- 资助金额:
$ 4.66万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347096 - 财政年份:2024
- 资助金额:
$ 4.66万 - 项目类别:
Standard Grant
Parahoric Character Sheaves and Representations of p-Adic Groups
隐喻特征束和 p-Adic 群的表示
- 批准号:
2401114 - 财政年份:2024
- 资助金额:
$ 4.66万 - 项目类别:
Continuing Grant
Multiple Representations of Learning in Dynamics and Control: Exploring the Synergy of Low-Cost Portable Lab Equipment, Virtual Labs, and AI within Student Learning Activities
动力学和控制中学习的多重表示:探索低成本便携式实验室设备、虚拟实验室和人工智能在学生学习活动中的协同作用
- 批准号:
2336998 - 财政年份:2024
- 资助金额:
$ 4.66万 - 项目类别:
Standard Grant














{{item.name}}会员




