Quantum Simulation and Chemistry with Ultracold Mixtures and Molecules

超冷混合物和分子的量子模拟和化学

基本信息

  • 批准号:
    RGPIN-2021-03585
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

One of the most exciting, and challenging, frontiers in quantum physics is strongly interacting systems. Strong interactions lie at the heart of poorly understood materials from unconventional superconductors to the cores of neutron stars and the quark-gluon plasma that filled the universe a tiny fraction of a second after the big bang. In such materials, many particles become inextricably linked to an extent that is impossible in classical physics. This connection, called entanglement, makes calculations of their structure and behavior extremely difficult. Entanglement is also the key resource that gives quantum computers the power to outperform classical computers. In quantum simulations, sometimes called analog quantum computers, experiments are built to obey specifically chosen rules that lead to strong interactions. In ultracold quantum simulations, we can manipulate and measure the system atom by atom, developing a deep understanding of how exotic properties emerge from seemingly simple rules. First, we will use cesium atoms to cool lithium atoms to record low temperatures in a simulation of a simple model believed to explain the behavior of high-temperature superconductors. Our quantum simulations will search for sets of parameters pointing to new materials that superconduct at higher temperatures. Second, we will use mixtures of cesium and lithium atoms to simulate lattice gauge theories. The most fundamental description of our universe, The Standard Model, is a collection of quantum field theories called gauge theories. The gauge theory describing nuclear matter has strong interactions that thwart attempts to understand nuclear physics from first principles. Our quantum simulations of related strongly interacting gauge theories will allow us to build intuitions that can then be applied back to The Standard Model and potentially point to new physics beyond it. The dynamics of chemical reactions are also determined by strong interactions. Even in simple reactions the large number of degrees of freedom couple strongly to one another. While these dynamics are innately quantum mechanical, room temperature chemistry experiments average over many quantum states, obscuring the fundamental dynamics. At ultracold temperatures we can completely control the quantum states of atoms and molecules to observe chemical dynamics with quantum state resolution. Since complex reactions can often be analyzed as a collection of simpler reactions, we will be able to apply what we learn from simple reactions to industrially important reactions. In addition to advancing our knowledge of technologically important physics, this research teaches students technical skills in electronics, optics, systems engineering, and programming. They also build analytical and quantitative skills valued by many industries. This training prepares students who will help drive Canada's high-tech economy in industry or independent research careers of their own.
量子物理学中最令人兴奋和最具挑战性的前沿之一是强相互作用系统。从非传统超导体到中子星的核心,再到大爆炸后零点几秒充满宇宙的夸克-胶子等离子体,强相互作用存在于人们知之甚少的物质的核心。在这种材料中,许多粒子变得千丝万缕地联系在一起,达到了经典物理学中不可能达到的程度。这种被称为纠缠的连接使得计算它们的结构和行为变得极其困难。纠缠也是赋予量子计算机超越经典计算机的能力的关键资源。在量子模拟中,有时被称为模拟量子计算机,实验是为了遵守特定的规则而建立的,这些规则会导致强烈的相互作用。在超冷量子模拟中,我们可以一个原子一个原子地操纵和测量系统,加深对如何从看似简单的规则中产生奇异性质的深刻理解。首先,我们将使用铯原子冷却锂原子来记录低温,模拟一个简单的模型,据信该模型可以解释高温超导体的行为。我们的量子模拟将搜索指向更高温度下超导的新材料的参数集。其次,我们将使用铯和锂原子的混合物来模拟晶格规范理论。对我们的宇宙最基本的描述是标准模型,它是被称为规范理论的量子场论的集合。描述核物质的规范理论具有强烈的相互作用,这阻碍了从第一原理理解核物理的尝试。我们对相关强相互作用规范理论的量子模拟将使我们能够建立直觉,然后将其应用回标准模型,并潜在地指向它以外的新物理。化学反应的动力学也是由强相互作用决定的。即使在简单的反应中,大量的自由度也是相互强烈耦合的。虽然这些动力学本质上是量子力学的,但室温化学实验平均覆盖了许多量子态,掩盖了基本的动力学。在超低温下,我们可以完全控制原子和分子的量子态,以量子态分辨率观察化学动力学。由于复杂的反应通常可以分析为简单反应的集合,我们将能够将我们从简单反应中学到的应用到工业上重要的反应中。除了提高我们的重要技术物理知识,这项研究还教授学生在电子学、光学、系统工程和编程方面的技术技能。他们还能培养许多行业看重的分析和量化技能。这一培训为那些将帮助推动加拿大工业高科技经济或自主研究职业生涯的学生做好准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jamison, Alan其他文献

Jamison, Alan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jamison, Alan', 18)}}的其他基金

Quantum Simulation and Chemistry with Ultracold Mixtures and Molecules
超冷混合物和分子的量子模拟和化学
  • 批准号:
    RGPIN-2021-03585
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Simulation and Chemistry with Ultracold Mixtures and Molecules
超冷混合物和分子的量子模拟和化学
  • 批准号:
    DGECR-2021-00346
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

CAREER: Develop a Hybrid Adaptive Particle-Field Simulation Method for Solutions of Macromolecules and a New Computational Chemistry Course for Lower-Division Undergraduates
职业:开发用于大分子解决方案的混合自适应粒子场模拟方法以及低年级本科生的新计算化学课程
  • 批准号:
    2337602
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
A Simulation-Based Pedagogical Approach in Chemistry Education
化学教育中基于模拟的教学方法
  • 批准号:
    2247282
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
A Simulation-Based Pedagogical Approach in Chemistry Education
化学教育中基于模拟的教学方法
  • 批准号:
    2247283
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Seeking quantum advantage from the quantum simulation of quantum chemistry
从量子化学的量子模拟中寻求量子优势
  • 批准号:
    2868586
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Studentship
Quantum Simulation and Chemistry with Ultracold Mixtures and Molecules
超冷混合物和分子的量子模拟和化学
  • 批准号:
    RGPIN-2021-03585
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Simulation and Chemistry with Ultracold Mixtures and Molecules
超冷混合物和分子的量子模拟和化学
  • 批准号:
    DGECR-2021-00346
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Collaborative Research: Frameworks: Scalable Modular Software and Methods for High-Accuracy Materials and Condensed Phase Chemistry Simulation
合作研究:框架:用于高精度材料和凝聚相化学模拟的可扩展模块化软件和方法
  • 批准号:
    1931328
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Compiling circuits for quantum simulation of quantum chemistry using truncated Taylor series
使用截断泰勒级数编译量子化学的量子模拟电路
  • 批准号:
    502882-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: Frameworks: Scalable Modular Software and Methods for High-Accuracy Materials and Condensed Phase Chemistry Simulation
合作研究:框架:用于高精度材料和凝聚相化学模拟的可扩展模块化软件和方法
  • 批准号:
    1931321
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Scalable Modular Software and Methods for High-Accuracy Materials and Condensed Phase Chemistry Simulation
合作研究:框架:用于高精度材料和凝聚相化学模拟的可扩展模块化软件和方法
  • 批准号:
    1931258
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了