Dynamic ensemble selection for data streams and multi-view learning
数据流和多视图学习的动态集成选择
基本信息
- 批准号:RGPIN-2021-04130
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Multiple Classifier System (MCS) is an active area of research in machine learning and pattern recognition. Several studies have been published demonstrating its advantages over individual classifier models either from the theoretical or empirical points of view. One of the most promising MCS approaches is Dynamic Ensemble Selection (DES), in which the base classifiers are selected on the fly, according to each new sample to be classified. DES has become an active research topic in the multiple classifier systems literature in past years due to recent works reporting dynamic ensembles' superior performance over static ones and monolithic classifiers. Despite the recent advancement in DES methods, there are still vastly unexplored areas by the DES community. Firstly, most of the conducted research considers a stationary environment. However, the majority of real-world applications have a non-static environment where data usually comes in the form of data streams and is continuously changing. Handling non-static environments pose new challenges for DES methods since they need to learn incrementally and cope with multiple problems found in data streams such as the addition of new classes, new features, and new views of the data. Secondly, current research on DES techniques considers a single view of the problem (i.e., a single feature space). However, often a single-view data cannot properly describe all examples in the data, and a multi-view approach is therefore required to improve generalization performance. Several real-world applications, such as text classification, biometrics, and the Internet of things (IoT), greatly benefit from adopting a multi-view learning approach. Hence, this research program's main objective is to propose DES methodologies to deal with large data streams and multi-view learning. This objective will be handled through three steps: (i) Development of a pool generation approach specially crafted for dynamic ensemble selection techniques; (ii) Adaptation of dynamic ensemble selection for dealing with large volumes of data; and (iii) Development of a dynamic multi-view ensemble selection methodology. This research program will lead to robust dynamic ensemble models that will benefit applications where data comes inherently through streams such as financial data classification, fake news detection, and traffic control. Moreover, I expect DES methods to significantly impact the field of multi-view learning as this breakthrough methodology will allow us to efficiently solve fundamental problems in this field by selecting the most relevant views of the data on-the-fly.
多分类器系统(MCS)是机器学习和模式识别领域的一个活跃研究领域。已经发表的几项研究表明,无论是从理论还是经验的角度来看,它都比单个分类器模型具有优势。最有前途的MCS方法之一是动态包围选择(DES),其中根据每个待分类的新样本动态地选择基本分类器。DES已经成为一个活跃的研究课题,在多分类器系统的文献中,在过去的几年中,由于最近的工作报告动态集成的上级性能优于静态的和单片分类器。尽管DES方法最近取得了进展,但DES社区仍有大量未开发的领域。首先,大多数进行的研究考虑静止环境。然而,大多数现实世界的应用程序都有一个非静态环境,其中数据通常以数据流的形式出现,并且不断变化。处理非静态环境对DES方法提出了新的挑战,因为它们需要增量学习并科普数据流中发现的多个问题,例如添加新类,新功能和新的数据视图。其次,目前对DES技术的研究考虑了问题的单一观点(即,单个特征空间)。然而,通常单视图数据不能正确地描述数据中的所有示例,因此需要多视图方法来提高泛化性能。一些现实世界的应用程序,如文本分类,生物识别和物联网(IoT),极大地受益于采用多视图学习方法。因此,本研究计划的主要目标是提出DES方法来处理大数据流和多视图学习。这一目标将通过三个步骤实现:㈠开发专门为动态集合选择技术设计的数据库生成方法; ㈡调整动态集合选择以处理大量数据; ㈢开发动态多视图集合选择方法。该研究计划将产生强大的动态集成模型,这些模型将有利于数据本身通过金融数据分类,假新闻检测和交通控制等流来的应用。此外,我预计DES方法将对多视图学习领域产生重大影响,因为这种突破性的方法将使我们能够通过选择最相关的数据视图来有效地解决该领域的基本问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MenelauOliveiraeCruz, Rafael其他文献
MenelauOliveiraeCruz, Rafael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MenelauOliveiraeCruz, Rafael', 18)}}的其他基金
Dynamic ensemble selection for data streams and multi-view learning
数据流和多视图学习的动态集成选择
- 批准号:
RGPIN-2021-04130 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Dynamic ensemble selection for data streams and multi-view learning
数据流和多视图学习的动态集成选择
- 批准号:
DGECR-2021-00309 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
基于WRF-Mosaic近似不同下垫面类型改变对区域能量和水分循环影响的集合模拟
- 批准号:41775087
- 批准年份:2017
- 资助金额:68.0 万元
- 项目类别:面上项目
相似海外基金
A robust ensemble Kalman filter to innovate short-range severe weather prediction
强大的集成卡尔曼滤波器创新短程恶劣天气预测
- 批准号:
24K07131 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An ensemble approach to studying the ocean's role in climate change
研究海洋在气候变化中的作用的整体方法
- 批准号:
DP240101274 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Projects
Study on ensemble forecast using a high-resolution ocean data assimilation system
高分辨率海洋资料同化系统集合预报研究
- 批准号:
23K13174 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study on Heavy Rainfall Mechanism by Mathematical and Data-Driven Approach Using Large Ensemble
利用大集合的数学和数据驱动方法研究强降雨机制
- 批准号:
23KF0161 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Enhancing Ensemble Diversity in Neural Ensemble Search for Uncertainty Quantification
增强神经集成搜索中的集成多样性以实现不确定性量化
- 批准号:
2872703 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Studentship
Development and spectral analysis of an ensemble machine learning model using quantum chemical descriptors
使用量子化学描述符的集成机器学习模型的开发和光谱分析
- 批准号:
23K04678 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Will climate change impede the throughput of field crop experiments?
气候变化会影响大田作物实验的产量吗?
- 批准号:
23K14051 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Singing voice synthesis that can form ensemble with humans and computers
人机合奏的歌声合成
- 批准号:
23K18474 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Ensemble averages in string theory and the AdS/BCFT correspondence
弦理论中的系综平均值和 AdS/BCFT 对应关系
- 批准号:
23KJ1337 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The masking, unmasking, and re-masking of food memories: neuronal ensemble mechanisms
食物记忆的掩蔽、揭露和重新掩蔽:神经元集成机制
- 批准号:
BB/X000427/1 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Research Grant