Data modelling for animal phenomics

动物表型组学的数据建模

基本信息

  • 批准号:
    RGPIN-2022-03452
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

One of the major limiting factors impacting multiple areas of animal science such as livestock breeding, production and genomics is related to collecting, managing and effectively modeling abundant, real-time, high-throughput and high-quality phenotypic data. Significant advancements in closing the gap between phenotypes and genotypes and developing a better understanding of complex interactions between phenotypes and production systems can be achieved by standardizing and automating phenotype collection protocols, improving the underlining collection technologies and augmenting the collected phenotypic information with environmental, geographic, genotypic, physical and physiological data 1,2. Significant efforts are being made by both, researchers and private businesses, to develop systems and technologies that harvest, store, model and analyze animal-related information synchronously within periodical and pre-established time frames relevant to specific phenotypic features and various steps of multiple production value chains. Given the large number of components of an animal phenotype such as morphological, developmental, biochemical, physiological and behavioural, this research proposal will focus on the study of phenotypes related to animal growth. The short-term goals of my research project include: (S1) developing efficient and accurate semi-automatic and automatic image acquisition and processing protocols for pigs, dairy and beef cattle using affordable sensors and reference objects, (S2) extracting and analyzing morphometric information (e.g. body dimensions, posture, body condition score and motion patterns) from images using data mining, computer vision and machine/deep learning methods, (S3) investigating the level of correlation among various morphometric measurements, animal physiological states and animal development/growth and their putative use in models capable to estimate or predict growth, and (S4) developing species-specific regression and classification phenotypic models for estimation of growth represented by live body weights and body condition scores (and other relevant existing and potentially new traits) based on digital images that include reference objects with known dimensions. The long-term goals include: (L1) researching methods that increase the accuracy and usability of semi-automatic and automatic phenotypic data collection, which can be further integrated with complementary livestock information to produce animals more efficiently and more sustainably, and to improve economic outcomes on the farm, (L2) collecting and integrating phenotypic results into models that can be used to develop predictive decision support systems for the Canadian industry, and (L3) recruiting and training highly qualified personnel in livestock phenomics.
影响动物科学多个领域(如畜牧养殖、生产和基因组学)的主要限制因素之一与收集、管理和有效建模丰富、实时、高通量和高质量的表型数据有关。通过标准化和自动化表型收集方案,改善底层收集技术,并利用环境、地理、基因型、物理和生理数据增加收集的表型信息,可以在缩小表型和基因型之间的差距以及更好地理解表型和生产系统之间的复杂相互作用方面取得重大进展1,2。研究人员和私营企业都在作出重大努力,开发系统和技术,以便在与特定表型特征和多个生产价值链的各个步骤有关的定期和预先确定的时间框架内同步采集、储存、建模和分析与动物有关的信息。鉴于动物表型的大量组成部分,例如形态、发育、生化、生理和行为,本研究提案将重点研究与动物生长相关的表型。我的研究项目的短期目标包括:(S1)使用可负担得起的传感器和参考对象开发用于猪、奶牛和肉牛的高效且准确的半自动和自动图像采集和处理协议,(S2)提取和分析形态测量信息(例如,身体尺寸、姿势、身体状况评分和运动模式),(S3)研究各种形态测量、动物生理状态和动物发育/生长之间的相关性水平及其在能够估计或预测生长的模型中的推定用途,以及(S4)开发物种特异性回归和分类表型模型,用于估计由活体重量和身体状况评分表示的生长(以及其他相关的现有的和潜在的新的特征),其基于包括具有已知尺寸的参考对象的数字图像。长期目标包括:(L1)研究提高半自动和自动表型数据收集的准确性和可用性的方法,所述表型数据收集可以进一步与补充牲畜信息整合,以更有效和更可持续地生产动物,并改善农场的经济成果,(L2)收集表型结果并将其整合到可以用于开发加拿大产业的预测决策支持系统的模型中,以及(L3)招募和培训家畜表型组学方面的高素质人员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tulpan, Dan其他文献

Does wing use and disuse cause behavioural and musculoskeletal changes in domestic fowl (Gallus gallus domesticus)?
  • DOI:
    10.1098/rsos.220809
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Garant, Renee C.;Tobalske, Bret W.;Ben Sassi, Neila;van Staaveren, Nienke;Tulpan, Dan;Widowski, Tina;Powers, Donald R.;Harlander-Matauschek, Alexandra
  • 通讯作者:
    Harlander-Matauschek, Alexandra
MetaboHunter: an automatic approach for identification of metabolites from 1H-NMR spectra of complex mixtures
  • DOI:
    10.1186/1471-2105-12-400
  • 发表时间:
    2011-10-14
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Tulpan, Dan;Leger, Serge;Cuperlovic-Culf, Miroslava
  • 通讯作者:
    Cuperlovic-Culf, Miroslava
InnateDB: facilitating systems-level analyses of the mammalian innate immune response.
  • DOI:
    10.1038/msb.2008.55
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Lynn, David J.;Winsor, Geoffrey L.;Chan, Calvin;Richard, Nicolas;Laird, Matthew R.;Barsky, Aaron;Gardy, Jennifer L.;Roche, Fiona M.;Chan, Timothy H. W.;Shah, Naisha;Lo, Raymond;Naseer, Misbah;Que, Jaimmie;Yau, Melissa;Acab, Michael;Tulpan, Dan;Whiteside, Matthew D.;Chikatamarla, Avinash;Mah, Bernadette;Munzner, Tamara;Hokamp, Karsten;Hancock, Robert E. W.;Brinkman, Fiona S. L.
  • 通讯作者:
    Brinkman, Fiona S. L.
Using Hybrid Artificial Intelligence and Evolutionary Optimization Algorithms for Estimating Soybean Yield and Fresh Biomass Using Hyperspectral Vegetation Indices
  • DOI:
    10.3390/rs13132555
  • 发表时间:
    2021-07-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Yoosefzadeh-Najafabadi, Mohsen;Tulpan, Dan;Eskandari, Milad
  • 通讯作者:
    Eskandari, Milad

Tulpan, Dan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tulpan, Dan', 18)}}的其他基金

Data modelling for animal phenomics
动物表型组学的数据建模
  • 批准号:
    DGECR-2022-00253
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Life and Physical Sciences interface: Whole animal mathematical and computational modelling of motion
生命与物理科学接口:整个动物运动的数学和计算模型
  • 批准号:
    BB/X005038/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Grant
Leveraging Clinical Data for Phenotyping and Predictive Modelling of Alzheimer’s Disease
利用临床数据进行阿尔茨海默病的表型分析和预测模型
  • 批准号:
    10535399
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
Leveraging Clinical Data for Phenotyping and Predictive Modelling of Alzheimer’s Disease
利用临床数据进行阿尔茨海默病的表型分析和预测模型
  • 批准号:
    10680423
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
Data modelling for animal phenomics
动物表型组学的数据建模
  • 批准号:
    DGECR-2022-00253
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Establishment of real-time animal infectious disease mathematical modelling research platform by the analysis of past epidemics
通过以往疫情分析建立实时动物传染病数学模型研究平台
  • 批准号:
    22K05992
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing a nested, multiscale framework for modelling animal movement processes from long-term tracking data
开发一个嵌套的多尺度框架,用于根据长期跟踪数据对动物运动过程进行建模
  • 批准号:
    2805547
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Studentship
Systems Pharmacology Modelling for Translating Animal Models of Neuroinflammation
用于转化神经炎症动物模型的系统药理学模型
  • 批准号:
    2617365
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Studentship
Quantitative Systems Pharmacology Modelling for Translating Animal Models of Neuroinflammation
用于转化神经炎症动物模型的定量系统药理学模型
  • 批准号:
    BB/W509930/1
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Training Grant
Extending Rough Path theory to applications in animal movement modelling
将粗糙路径理论扩展到动物运动建模中的应用
  • 批准号:
    2585640
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Studentship
In vivo modelling and therapy development for stathmin-2 loss in TDP-43 proteinopathies
TDP-43 蛋白病中 stathmin-2 缺失的体内建模和治疗开发
  • 批准号:
    10317404
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了