Symbiosis Optimization of Double- Skin Façades and Interactive Image-based Networking in Cold Climates
寒冷气候下双层立面的共生优化和基于图像的交互式网络
基本信息
- 批准号:RGPIN-2018-06686
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
By 2050, Canada is expected to have 85% of its population living in cities. Such urban growth would affect renewable natural resources being used in excess of their regeneration capacity. This challenge of a negative ecological impact can be mitigated by adapting a net-zero environmental model in buildings. Current strategies in this model are expanding to include waste, water, carbon, and air in addition to energy. In cold climates, double skin façades (DSF) on buildings can provide a solution to low ambient temperatures and snow deposition for façade-integrated energy production. However, the optimization of DSF is complicated by two problems. First, it is currently not known what are the environmental benefits in optimizing geometric form and efficiency in building façades. Secondly, with the precision needed to achieve net-zero targets, existing façade optimization algorithms are limited in processing numerical data for detecting noises and recognizing contrast. This limitation can be overcome by real time image-based data analysis.Aside from energy, micro-algae photobioreactors are emerging as a valuable new system that cultures organic feedstock in a nutrient-rich water for biological growth. A DSF system, composed of a pair of glass layers separated by an air space corridor, can house these photobioreactors to extend the environmental performance of a building by absorbing carbon dioxide, releasing oxygen, providing adaptive shading, utilizing a building's wastewater and preserving land resources for alternative harvesting. Using algorithms that operate on image-based data, various inroads can be made in façade optimization of typological, thermal and visual irregularities. These irregularities would involve factors such as DSF glazing properties, thermal behavior, density imbalances in algae, and photobioreactor degradation. This research will study new forms of DSF that integrate photobioreactors and monitoring with image-processing functionality in cold climates. The potential value is in solving complex façade design challenges, maximizing energy efficiency, improving parametric building information, and leveraging climate variability. The biggest game-changing impact is in achieving zero environmental footprint in the core of a city. Highly qualified personnel will be trained to gain significant experience and expertise in optimization theory, image-processing, systems implementation, and assessment procedures in façade and photobioreactor technologies.The research is expected to impact public and private sectors of the energy and building industries; government agencies such as the National Research Council and Natural Resources Canada; policy makers; and the general public. The contributions are expected to further impact the development of standards and codes of environmental design practices relevant to commercial building systems.
到2050年,加拿大预计将有85%的人口居住在城市。这种城市增长将影响到可再生自然资源的使用,使其超过其再生能力。这种负面生态影响的挑战可以通过在建筑物中采用净零环境模型来缓解。该模式中的当前策略正在扩展,除了能源之外,还包括废物,水,碳和空气。在寒冷的气候中,建筑物上的双层幕墙(DSF)可以为低环境温度和雪沉积提供解决方案,用于幕墙集成能源生产。然而,DSF的优化被两个问题复杂化。首先,目前还不知道优化建筑立面的几何形状和效率的环境效益是什么。其次,由于需要达到净零目标的精度,现有的立面优化算法在处理用于检测噪声和识别对比度的数值数据方面受到限制。这种限制可以通过基于真实的时间图像的数据分析来克服。除了能源,微藻光生物反应器正在成为一个有价值的新系统,在营养丰富的水中培养有机原料,用于生物生长。DSF系统由一对由空气空间走廊隔开的玻璃层组成,可以容纳这些光生物反应器,通过吸收二氧化碳,释放氧气,提供自适应遮阳,利用建筑物的废水和保护土地资源以供替代收获来扩展建筑物的环境性能。使用基于图像数据的算法,可以在类型,热和视觉不规则性的立面优化中取得各种进展。这些不规则性将涉及诸如DSF玻璃化性质、热行为、藻类中的密度不平衡和光生物反应器降解等因素。这项研究将研究新形式的DSF,将光生物反应器和监测与寒冷气候下的图像处理功能相结合。其潜在价值在于解决复杂的立面设计挑战,最大限度地提高能源效率,改善参数化建筑信息,并利用气候变化。改变游戏规则的最大影响是在城市核心实现零环境足迹。高素质的人员将接受培训,以获得优化理论,图像处理,系统实施和立面和光生物反应器技术评估程序的重要经验和专业知识。该研究预计将影响能源和建筑行业的公共和私营部门;政府机构,如国家研究理事会和加拿大自然资源部;政策制定者;和公众。预计这些贡献将进一步影响与商业建筑系统有关的环境设计做法标准和守则的制定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Araji, Mohamad其他文献
Araji, Mohamad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Araji, Mohamad', 18)}}的其他基金
Symbiosis Optimization of Double- Skin Façades and Interactive Image-based Networking in Cold Climates
寒冷气候下双层立面的共生优化和基于图像的交互式网络
- 批准号:
RGPIN-2018-06686 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Symbiosis Optimization of Double- Skin Façades and Interactive Image-based Networking in Cold Climates
寒冷气候下双层立面的共生优化和基于图像的交互式网络
- 批准号:
RGPIN-2018-06686 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Symbiosis Optimization of Double- Skin Façades and Interactive Image-based Networking in Cold Climates
寒冷气候下双层立面的共生优化和基于图像的交互式网络
- 批准号:
RGPIN-2018-06686 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Symbiosis Optimization of Double- Skin Façades and Interactive Image-based Networking in Cold Climates
寒冷气候下双层立面的共生优化和基于图像的交互式网络
- 批准号:
RGPIN-2018-06686 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Symbiosis Optimization of Double- Skin Façades and Interactive Image-based Networking in Cold Climates
寒冷气候下双层立面的共生优化和基于图像的交互式网络
- 批准号:
DGECR-2018-00063 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
- 批准号:
2349338 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
- 批准号:
AH/Z000041/1 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Research Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant