Mixtures of Contaminated Shifted Asymmetric Laplace Factor Analyzers
受污染的移位不对称拉普拉斯因子分析仪的混合物
基本信息
- 批准号:RGPIN-2017-04676
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cluster analysis can be defined as the search for interesting groups within data. When a finite mixture model is used for cluster analysis, it is called model-based clustering. Typically, the development of novel model-based clustering approaches has focused on the Gaussian mixture model. Unfortunately, the assumption that the subpopulations of the observed data are Gaussian distributed is ofttimes unrealistic. The research proposed herein will extend the current literature on model-based clustering via development of finite mixtures of non-Gaussian distributions. Specifically, a mixture of contaminated shifted asymmetric Laplace factor analyzers (MCSALFA) will be developed. This model will be well suited for the analysis of high-dimensional and big data that contain spurious, outlying, or noisy observations. Of special interest are data sets whose number of variables exceeds the number of observations, like those arising from microarray gene expression analysis.From a methodological standpoint, the MCSALFA will unify the factor analysis model and the contaminated mixture model. It will utilize a robust parameter estimation scheme, i.e., one that is not sensitive to outlying points, that is based on a variant of the expectation-maximization (EM) algorithm. It is well-known that using the EM algorithm to estimate the parameters of a finite mixture model can be detrimental because the likelihood surface typically contains many local maxima. As such, one offshoot of the proposed research will be addressing this concern via different initialization strategies. Once implemented, the applicant will publish a manuscript documenting the model's derivation and classification performance. In addition, open-source software will be released for researchers around the world.The aforementioned example of data arising from gene expression microarray analysis is only one of many possible applications. Data rife in spurious observations, like those arising from socio-economic studies and sensory studies, will also be targeted. The applicant will establish a research program that focuses on the development of non-Gaussian mixture models. The proposed research project will provide a strong foundation for this research program by providing suitable projects for both undergraduate and graduate students. In addition, because the applications of the proposed research will be far reaching, opportunities for students to collaborate with researchers from other fields will arise.
聚类分析可以定义为在数据中搜索感兴趣的组。当有限混合模型用于聚类分析时,它被称为基于模型的聚类。通常,基于模型的聚类方法的发展主要集中在高斯混合模型上。不幸的是,假设观测数据的子群体是高斯分布的往往是不现实的。本文提出的研究将扩展目前的文献基于模型的聚类通过发展有限的混合非高斯分布。具体而言,将开发一种混合污染的移位不对称拉普拉斯因子分析仪(MCSALFA)。该模型将非常适合于分析包含虚假,外围或噪声观测的高维和大数据。特别令人感兴趣的是数据集的变量的数量超过了观察的数量,像那些从微阵列基因表达analysis.From方法的角度来看,MCSALFA将统一的因素分析模型和污染的混合模型。它将利用稳健的参数估计方案,即,一个是不敏感的离群点,这是基于一个变种的期望最大化(EM)算法。众所周知,使用EM算法来估计有限混合模型的参数可能是有害的,因为似然曲面通常包含许多局部极大值。因此,拟议研究的一个分支将通过不同的初始化策略解决这一问题。一旦实施,申请人将发表一份手稿,记录模型的推导和分类性能。此外,还将向全世界的研究人员发布开放源码软件。上述基因表达微阵列分析数据的例子只是许多可能的应用之一。充斥着虚假观察的数据,如来自社会经济研究和感官研究的数据,也将成为目标。申请人将建立一个研究计划,重点是非高斯混合模型的发展。拟议的研究项目将通过为本科生和研究生提供合适的项目,为这项研究计划提供一个坚实的基础。此外,由于拟议的研究的应用将是深远的,学生与其他领域的研究人员合作的机会将出现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Franczak, Brian其他文献
Franczak, Brian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Franczak, Brian', 18)}}的其他基金
Mixtures of Contaminated Shifted Asymmetric Laplace Factor Analyzers
受污染的移位不对称拉普拉斯因子分析仪的混合物
- 批准号:
RGPIN-2017-04676 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Mixtures of Contaminated Shifted Asymmetric Laplace Factor Analyzers
受污染的移位不对称拉普拉斯因子分析仪的混合物
- 批准号:
RGPIN-2017-04676 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Mixtures of Contaminated Shifted Asymmetric Laplace Factor Analyzers
受污染的移位不对称拉普拉斯因子分析仪的混合物
- 批准号:
RGPIN-2017-04676 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Mixtures of Contaminated Shifted Asymmetric Laplace Factor Analyzers
受污染的移位不对称拉普拉斯因子分析仪的混合物
- 批准号:
RGPIN-2017-04676 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Mixtures of Contaminated Shifted Asymmetric Laplace Factor Analyzers
受污染的移位不对称拉普拉斯因子分析仪的混合物
- 批准号:
RGPIN-2017-04676 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Engineering Biology Hub for environmental processing and recovery of metals; from contaminated land to industrial biotechnology in a circular economy
用于环境处理和金属回收的工程生物中心;
- 批准号:
BB/Y008456/1 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Research Grant
Understanding and optimising ultrasound remediation of PFAS-contaminated soils and groundwater
了解和优化 PFAS 污染土壤和地下水的超声波修复
- 批准号:
2886427 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Studentship
Technology to reduce transfer, accumulation, and toxic effects on organisms and humans without reducing heavy metal concentrations in contaminated soil
减少转移、积累以及对生物体和人类的毒性影响而不降低受污染土壤中重金属浓度的技术
- 批准号:
23H03545 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Separation of nuclides from contaminated water by gravity-driven flow chromatography using chelate adsorbent
使用螯合吸附剂通过重力驱动流色谱法从污染水中分离核素
- 批准号:
23K04633 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of arsenic-contaminated groundwater purification technology to secure safe water resources in the Mekong Delta
开发砷污染地下水净化技术确保湄公河三角洲水资源安全
- 批准号:
23KK0199 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Innovative carbon-metal nanohybrids (CMNs) for simultaneous removal of heavy metals and radionuclides from contaminated water: experimental investigation & utilization in membrane unit
用于同时去除污染水中的重金属和放射性核素的创新碳-金属纳米杂化物(CMN):实验研究
- 批准号:
23K17055 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exposure pathways and mental health impact of PFAS-contaminated biosolids
PFAS 污染的生物固体的暴露途径和心理健康影响
- 批准号:
10747241 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Birth cohort study on growth and development in arsenic-contaminated areas of Myanmar
缅甸砷污染地区生长发育的出生队列研究
- 批准号:
23KK0170 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Adjuvant Photodynamic Therapy to Reduce Bacterial Bioburden in High-Energy Contaminated Open Fractures
辅助光动力疗法可减少高能污染开放性骨折中的细菌生物负载
- 批准号:
10735964 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Design of a long-term evaluation system for naturally contaminated soil based on environmental exposure tests and simple numerical analysis
基于环境暴露试验和简单数值分析的自然污染土壤长期评价体系设计
- 批准号:
22KJ1736 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for JSPS Fellows