Molecular determinants of cell mechanics

细胞力学的分子决定因素

基本信息

  • 批准号:
    RGPIN-2020-04608
  • 负责人:
  • 金额:
    $ 3.06万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Our long-term objective is to determine how the cytoskeleton governs cellular organization and mechanics. The cytoskeleton is a set of self-assembling, dynamic polymers that give the cell its shape and structure. The organization of these polymers changes in response to mechanical and biochemical signals, allowing the cell to rapidly tune its mechanics from highly-crosslinked, elastic networks to weakly-crosslinked, viscous networks. Precise control of the cell's mechanical properties is required for cells to divide, move, and differentiate to form tissues and organs. We develop single-molecule methods for imaging cytoskeletal organization, controlling protein activity, and measuring intracellular forces on the nanometer and pico-Newton scales relevant to cell biology. To quantify the viscoelasticity of living cells, we manipulate micron-sized beads in the cytoplasm of living cells using optical tweezers. In parallel, we use single-molecule localization microscopy to map the organization of the cytoskeleton with nanometer resolution. Aim 1. To uncover how the microtubule cytoskeleton controls cell mechanics. The cytoskeleton consists of three types of filaments: microtubules, actin, and intermediate filaments. These cytoskeletal filaments interact to govern cell mechanics. While the field has largely focused on actin and intermediate filaments, recent studies demonstrate an important role for microtubules in governing the mechanics of cardiac muscle. We hypothesize that microtubules are a key regulator of cell mechanics not only in muscle cells, but rather this is a general mechanism used by many cell types. Microtubule rigidity is modulated by post-translational modifications and microtubule-associated proteins that bind along the microtubule lattice. We will use new optogenetic tools to modulate microtubule post-translational modifications, and quantify the impact on cytoskeletal organization and mechanics with single-molecule resolution. Aim 2. To dissect the molecular mechanisms that govern the assembly and mechanics of membraneless organelles. While many cellular organelles are separated from the cytoplasm by a membrane, others compartmentalize through liquid-liquid phase separation (LLPS). LLPS is central to many cell processes including gene expression, neurodegeneration, spindle assembly, and endocytosis. We will (1) trigger the formation of membraneless organelles in the cytoplasm using optogenetics and measure the effect on cell mechanical properties, and (2) use optical tweezers to probe the viscoelastic behavior of phase-separated membraneless organelles to uncover how weak, multivalent interactions between multiple proteins control assembly and disassembly. Together, this program will provide a mechanistic understanding of how changes in the mechanics of single polymers and phase-separated condensates tune the viscoelastic properties of the cell in response to chemical, mechanical, and developmental cues.
我们的长期目标是确定细胞骨架如何控制细胞组织和力学。细胞骨架是一组自组装的动态聚合物,它们赋予细胞形状和结构。这些聚合物的组织随着机械和生化信号的变化而变化,使细胞能够迅速调整其力学,从高交联的弹性网络到弱交联的粘性网络。精确控制细胞的机械特性是细胞分裂、移动和分化形成组织和器官所必需的。我们开发了单分子方法来成像细胞骨架组织,控制蛋白质活性,并在纳米和皮牛顿尺度上测量与细胞生物学相关的细胞内力。为了量化活细胞的粘弹性,我们使用光学镊子在活细胞的细胞质中操纵微米大小的珠子。同时,我们使用单分子定位显微镜以纳米分辨率绘制细胞骨架的组织。目的1。揭示微管细胞骨架如何控制细胞力学。细胞骨架由三种类型的纤维组成:微管、肌动蛋白和中间纤维。这些细胞骨架细丝相互作用支配着细胞力学。虽然该领域主要集中在肌动蛋白和中间丝,但最近的研究表明微管在控制心肌力学中的重要作用。我们假设微管不仅在肌肉细胞中是细胞力学的关键调节器,而且这是许多细胞类型使用的一般机制。微管刚性是由翻译后修饰和微管相关蛋白沿微管晶格结合而调节的。我们将使用新的光遗传学工具来调节微管翻译后修饰,并以单分子分辨率量化对细胞骨架组织和力学的影响。目标2。剖析控制无膜细胞器组装和力学的分子机制。虽然许多细胞器通过膜与细胞质分离,但其他细胞器通过液-液相分离(LLPS)进行区隔。LLPS是许多细胞过程的核心,包括基因表达、神经变性、纺锤体组装和内吞作用。我们将(1)利用光遗传学触发细胞质中无膜细胞器的形成,并测量其对细胞力学特性的影响;(2)使用光镊探测相分离无膜细胞器的粘弹性行为,以揭示多种蛋白质之间微弱的多价相互作用如何控制组装和拆卸。总之,这个程序将提供一个机制上的理解,如何改变在单一的聚合物和相分离凝聚物的力学调整细胞的粘弹性特性,以响应化学,机械和发育线索。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hendricks, Adam其他文献

Hendricks, Adam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hendricks, Adam', 18)}}的其他基金

Molecular determinants of cell mechanics
细胞力学的分子决定因素
  • 批准号:
    RGPIN-2020-04608
  • 财政年份:
    2021
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular determinants of cell mechanics
细胞力学的分子决定因素
  • 批准号:
    RGPIN-2020-04608
  • 财政年份:
    2020
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Cytoskeleton-based regulation of microtubule motors in intracellular transport.
细胞内运输中微管马达的基于细胞骨架的调节。
  • 批准号:
    RGPIN-2014-06380
  • 财政年份:
    2019
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Cytoskeleton-based regulation of microtubule motors in intracellular transport.
细胞内运输中微管马达的基于细胞骨架的调节。
  • 批准号:
    RGPIN-2014-06380
  • 财政年份:
    2018
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Cytoskeleton-based regulation of microtubule motors in intracellular transport.
细胞内运输中微管马达的基于细胞骨架的调节。
  • 批准号:
    RGPIN-2014-06380
  • 财政年份:
    2017
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Cytoskeleton-based regulation of microtubule motors in intracellular transport.
细胞内运输中微管马达的基于细胞骨架的调节。
  • 批准号:
    RGPIN-2014-06380
  • 财政年份:
    2016
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Cytoskeleton-based regulation of microtubule motors in intracellular transport.
细胞内运输中微管马达的基于细胞骨架的调节。
  • 批准号:
    RGPIN-2014-06380
  • 财政年份:
    2015
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Cytoskeleton-based regulation of microtubule motors in intracellular transport.
细胞内运输中微管马达的基于细胞骨架的调节。
  • 批准号:
    RGPIN-2014-06380
  • 财政年份:
    2014
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Oblique illumination system for high resolution tracking and label-free live-cell imaging
用于高分辨率跟踪和无标记活细胞成像的倾斜照明系统
  • 批准号:
    476971-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Engage Grants Program

相似海外基金

At the right time and place – identifying epigenetic and molecular determinants of a developmental learning window
在正确的时间和地点 – 识别发育学习窗口的表观遗传和分子决定因素
  • 批准号:
    10575177
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
Molecular determinants of sex-specific DNA methylation signature acquisition in the mammalian germline
哺乳动物种系中性别特异性 DNA 甲基化特征获取的分子决定因素
  • 批准号:
    10723071
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
Molecular Determinants of liver sinusoidal endothelial cells for hepatic regeneration
肝窦内皮细胞肝再生的分子决定因素
  • 批准号:
    10682071
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
Turning on Persistence: Novel Molecular Determinants that Underpin P. gingivalis' Intracellular Survival In Epithelial Cells
开启持久性:支持牙龈卟啉单胞菌在上皮细胞内存活的新型分子决定因素
  • 批准号:
    10836756
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
Molecular Determinants of Response and Resistance to EZH2 and PARP inhibition in Prostate Cancer
前列腺癌中 EZH2 和 PARP 抑制反应和耐药性的分子决定因素
  • 批准号:
    10628273
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
Defining molecular determinants of Plasmodium falciparum hematopoietic infection using single cell profiling and genetics
使用单细胞分析和遗传学定义恶性疟原虫造血系统感染的分子决定因素
  • 批准号:
    EP/Y003705/1
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Fellowship
Molecular recording to understand the determinants of cell fate transitions in early development
分子记录以了解早期发育中细胞命运转变的决定因素
  • 批准号:
    10643190
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
Genomic and molecular determinants of EV-D68 neuroinvasive disease
EV-D68神经侵袭性疾病的基因组和分子决定因素
  • 批准号:
    10657198
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
Identifying the molecular determinants of pterygium progression
确定翼状胬肉进展的分子决定因素
  • 批准号:
    10656905
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
Bacterial and Molecular Determinants of Mycobacterial Impermeability
分枝杆菌不渗透性的细菌和分子决定因素
  • 批准号:
    10749613
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了