The combined role of cellular force dynamics and extracellular matrix mechanical properties in driving angiogenesis
细胞力动力学和细胞外基质力学特性在驱动血管生成中的综合作用
基本信息
- 批准号:RGPIN-2018-06214
- 负责人:
- 金额:$ 2.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Angiogenesis is a complex process where biochemical and mechanical signals regulate endothelial cell proliferation and migration. Recent years have seen several advances in our understanding of the role of forces in endothelial cells (EC). Cellular contractility is now fully appreciated as a crucial cell property that influences cell behaviors involved in both normal and pathological processes, including cell adhesion and migration. Cell contractility is known to be in turn influenced by the mechanical properties of the extracellular matrix (ECM). Despite intensive efforts to characterize the forces generated in biological systems, the regulatory relationships between forces and dynamic mechanical properties remain virtually unknown. This is an ongoing problematic in tissue engineering since it affects our ability to accurately recreate engineered disease models or control the neovascularization process of implantable scaffolds. Objectives: This research program will use our background in mechanobiology and biophotonics to investigate the dynamic interplay between the physical properties of the 3D microenvironment and cell force generation during angiogenesis. The program will address the following main goals: (1) investigate the temporal dynamics of EC force generation and associated molecular controls, and (2) probe discrete strain propagation within engineered collagen scaffolds and its influence on EC behavior. Impact: Our work will provide new data on the functional link and relationship between molecular controls, cell forces, and ECM mechanical properties during angiogenesis that can be used to design better tissue engineered scaffolds. Furthermore, considering that the relationship between cell forces and ECM mechanics is not unique to ECs, this project will have far reaching impacts in the field of mechanobiology and provide critical insights in our understanding of the role of forces in physiological processes. In addition, this work leverages a novel tool that would be unique in Canada, with the only other similar system being at Vanderbilt University. By increasing our expertise in the use of QPOL microscopy to answer biological questions, we aim to enable technological transfer toward tissue engineers as well as cancer and cardiovascular researchers. Overall, this research program will contribute to the training of highly qualified personnel by providing a highly interdisciplinary environment where they will learn cutting edge techniques in bioengineering, physics, and cellular biology that are highly sought after in the field of biotechnology.
血管生成是一个复杂的过程,生化和机械信号调控内皮细胞的增殖和迁移。近年来,我们在对力在内皮细胞(EC)中的作用的理解上取得了一些进展。细胞的伸缩性现在被认为是一种重要的细胞属性,它影响细胞的正常和病理过程,包括细胞黏附和迁移。细胞的收缩能力反过来又受到细胞外基质(ECM)的机械特性的影响。尽管对生物系统中产生的力进行了深入的研究,但力与动态机械特性之间的调节关系实际上仍然是未知的。这在组织工程学中是一个持续存在的问题,因为它影响了我们准确重建工程化疾病模型或控制可植入支架的新生血管过程的能力。目的:本研究计划将利用我们在机械生物学和生物光子学方面的背景,研究血管生成过程中三维微环境的物理特性与细胞力生成之间的动态相互作用。该计划将解决以下主要目标:(1)研究EC力产生的时间动力学和相关的分子控制;(2)探索离散应变在工程胶原支架中的传播及其对EC行为的影响。影响:我们的工作将提供关于血管生成过程中分子控制、细胞力和ECM机械性能之间的功能联系和关系的新数据,可用于设计更好的组织工程支架。此外,考虑到细胞力和ECM力学之间的关系并不是ECs独有的,这个项目将在机械生物学领域产生深远的影响,并为我们理解力在生理过程中的作用提供关键的见解。此外,这项工作利用了一个在加拿大独一无二的新工具,唯一的其他类似系统是在范德比尔特大学。通过增加我们在使用QPOL显微镜回答生物学问题方面的专业知识,我们的目标是使技术转移到组织工程师以及癌症和心血管研究人员。总体而言,该研究计划将通过提供一个高度跨学科的环境,帮助高素质人才的培训,让他们学习生物技术领域非常受欢迎的生物工程、物理和细胞生物学的尖端技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bordeleau, François其他文献
Bordeleau, François的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bordeleau, François', 18)}}的其他基金
The combined role of cellular force dynamics and extracellular matrix mechanical properties in driving angiogenesis
细胞力动力学和细胞外基质力学特性在驱动血管生成中的综合作用
- 批准号:
RGPIN-2018-06214 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
The combined role of cellular force dynamics and extracellular matrix mechanical properties in driving angiogenesis
细胞力动力学和细胞外基质力学特性在驱动血管生成中的综合作用
- 批准号:
RGPIN-2018-06214 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
The combined role of cellular force dynamics and extracellular matrix mechanical properties in driving angiogenesis
细胞力动力学和细胞外基质力学特性在驱动血管生成中的综合作用
- 批准号:
RGPIN-2018-06214 - 财政年份:2019
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
The combined role of cellular force dynamics and extracellular matrix mechanical properties in driving angiogenesis
细胞力动力学和细胞外基质力学特性在驱动血管生成中的综合作用
- 批准号:
DGECR-2018-00099 - 财政年份:2018
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Launch Supplement
The combined role of cellular force dynamics and extracellular matrix mechanical properties in driving angiogenesis
细胞力动力学和细胞外基质力学特性在驱动血管生成中的综合作用
- 批准号:
RGPIN-2018-06214 - 财政年份:2018
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
PfAP2-R介导的PfCRT转录调控在恶性疟原虫对喹啉类药物抗性中的作用及机制研究
- 批准号:82372275
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Sestrin2抑制内质网应激对早产儿视网膜病变的调控作用及其机制研究
- 批准号:82371070
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Targeting epigenetic machinery to overcome myeloid cell-mediated resistance to anti-PD-1 therapy in GBM
靶向表观遗传机制克服 GBM 中骨髓细胞介导的抗 PD-1 治疗耐药性
- 批准号:
10634277 - 财政年份:2023
- 资助金额:
$ 2.33万 - 项目类别:
Develop Conditionally Armored CAR Macrophage Therapy for Pancreatic Cancer
开发针对胰腺癌的条件装甲 CAR 巨噬细胞疗法
- 批准号:
10710883 - 财政年份:2023
- 资助金额:
$ 2.33万 - 项目类别:
Developing new therapeutic strategies for brain metastasis
开发脑转移的新治疗策略
- 批准号:
10578405 - 财政年份:2023
- 资助金额:
$ 2.33万 - 项目类别:
Using natural killer cells to prevent breast cancer metastases
使用自然杀伤细胞预防乳腺癌转移
- 批准号:
10591362 - 财政年份:2023
- 资助金额:
$ 2.33万 - 项目类别:
Project 4:Targeting M2-like Macrophages and MDSC with Myelolytic-Virotherapy
项目 4:利用溶髓病毒疗法靶向 M2 样巨噬细胞和 MDSC
- 批准号:
10885260 - 财政年份:2023
- 资助金额:
$ 2.33万 - 项目类别:
Oncogenic Drivers of Rhabdomyosarcoma Cell State, Cancer Stem Cells and Metastasis
横纹肌肉瘤细胞状态、癌症干细胞和转移的致癌驱动因素
- 批准号:
10658091 - 财政年份:2023
- 资助金额:
$ 2.33万 - 项目类别:
Functional Characterization and Development of Therapeutic Paradigms for DNA Damage Repair (DDR)-deficient Lethal Prostate Cancer
DNA 损伤修复 (DDR) 缺陷的致死性前列腺癌的功能表征和治疗范例的开发
- 批准号:
10675929 - 财政年份:2023
- 资助金额:
$ 2.33万 - 项目类别:
Evaluating unique aspects of quiescent ovarian cancer cell biology for therapeutic targets
评估静息卵巢癌细胞生物学的独特方面以寻找治疗靶点
- 批准号:
10750118 - 财政年份:2023
- 资助金额:
$ 2.33万 - 项目类别:
Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
- 批准号:
10564801 - 财政年份:2023
- 资助金额:
$ 2.33万 - 项目类别:
Time toxicity of cancer: the time demands of cancer-related activities and their impact on well-being and quality of life
癌症的时间毒性:癌症相关活动的时间需求及其对福祉和生活质量的影响
- 批准号:
10583723 - 财政年份:2023
- 资助金额:
$ 2.33万 - 项目类别: