High-throughput evolutionary systems biology for expanded genotype-phenotype mapping

用于扩展基因型-表型作图的高通量进化系统生物学

基本信息

  • 批准号:
    RGPIN-2021-02716
  • 负责人:
  • 金额:
    $ 2.7万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

To what extent can we predict quantitative phenotypes based on genotype? Recent work in genome-wide association studies has proposed that genetic traits are often highly polygenic and influenced by numerous small-effect polymorphisms. This hypothesis has profound consequences for the fields of evolution and genetics. Namely, it suggests that searches for quantitative-trait loci (QTLs) can be placed into a broader explanatory framework where phenotypes are manifestations of the cumulative effects of several biological processes connected by the causal mutations affecting them. Thus, to understand the effect of mutations on phenotypes, we must consider how changes in genes and regulatory sequences affect function in context. Getting at the statistics of this mapping function, for example the extent to which a cellular process can influence a phenotype and be selected on by evolution, is the central question of my research program. In my proposal, I describe short-term objectives that addresses this question for transcriptional processes with the eventual goal of expanding this strategy to other molecular mechanisms such as protein regulation. First, getting at the statistics of any high-dimensional process requires thousands of comprehensive measurements. Next-generation sequencing and high-throughput liquid handling robotics now allow rapid sequencing of many genomes at very low cost. However, the knowledge of mutations at the DNA level do not immediately translate to knowledge of how the underlying cellular architecture has been perturbed. Unfortunately, high-throughput technologies are still lagging for other genomics tools such as transcriptomics and proteomics. Using our expertise in automation and reaction miniaturization, we will develop new technologies to interrogate cellular networks at scale. Second, we apply novel and existing statistical methods for new genomics data to model the cellular network between genotype and phenotype. Previously, similar approaches have been used to infer whether phenotypes had genetic components regardless of the molecular basis of the trait. Here, we use these statistical techniques to partition the variation in underlying cellular architecture that is responsible for the observed phenotypes. Finally, we use these approaches to test hypotheses about quantitative genetics and evolution directly in the lab by interrogating the systems biology of the cell between 1) individuals in a genetically diverse population, 2) between cell lineages over thousands of generations of evolution, and 3) between individuals drifting under no natural selection. This project provides a comprehensive description of the molecular processes that form phenotypes and connects these to phenotypic evolution. We employ interdisciplinary techniques, leveraging robotic liquid-handling and next-generation sequencing to bridge the demand for large datasets in statistical models of the cell and population genetics.
在多大程度上我们可以根据基因型预测数量表型?最近的工作在全基因组关联研究提出,遗传性状往往是高度多基因和许多小效应多态性的影响。这一假说对进化和遗传学领域产生了深远的影响。也就是说,它表明,数量性状基因座(QTL)的搜索可以放置到一个更广泛的解释框架,表型是由影响它们的因果突变连接的几个生物过程的累积效应的表现。因此,为了理解突变对表型的影响,我们必须考虑基因和调控序列的变化如何影响环境中的功能。获得这种映射函数的统计数据,例如细胞过程可以影响表型并被进化选择的程度,是我研究计划的中心问题。在我的建议中,我描述了解决转录过程中这个问题的短期目标,最终目标是将这一策略扩展到其他分子机制,如蛋白质调控。首先,获取任何高维过程的统计数据都需要进行数千次全面的测量。下一代测序和高通量液体处理机器人现在可以以非常低的成本快速测序许多基因组。然而,DNA水平上的突变知识并不能立即转化为基本细胞结构如何被扰乱的知识。不幸的是,高通量技术仍然落后于其他基因组学工具,如转录组学和蛋白质组学。利用我们在自动化和反应小型化方面的专业知识,我们将开发新技术来大规模询问蜂窝网络。第二,我们应用新的和现有的统计方法,新的基因组学数据的基因型和表型之间的细胞网络模型。以前,类似的方法已被用来推断表型是否有遗传成分,而不管性状的分子基础。在这里,我们使用这些统计技术来划分的变化,在底层的细胞结构,是负责观察到的表型。 最后,我们使用这些方法直接在实验室中测试关于数量遗传学和进化的假设,方法是询问1)遗传多样性群体中的个体之间的细胞系统生物学,2)数千代进化的细胞谱系之间的细胞系统生物学,以及3)在没有自然选择的情况下漂移的个体之间的细胞系统生物学。 该项目提供了形成表型的分子过程的全面描述,并将其与表型进化联系起来。我们采用跨学科技术,利用机器人液体处理和下一代测序来满足细胞和群体遗传学统计模型中对大型数据集的需求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NguyenBa, Alex其他文献

NguyenBa, Alex的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NguyenBa, Alex', 18)}}的其他基金

High-throughput evolutionary systems biology for expanded genotype-phenotype mapping
用于扩展基因型-表型作图的高通量进化系统生物学
  • 批准号:
    DGECR-2021-00117
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Launch Supplement
High-throughput evolutionary systems biology for expanded genotype-phenotype mapping
用于扩展基因型-表型作图的高通量进化系统生物学
  • 批准号:
    RGPIN-2021-02716
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

经济复杂系统的非稳态时间序列分析及非线性演化动力学理论
  • 批准号:
    70471078
  • 批准年份:
    2004
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

Eco-evolutionary dynamics of seasonally mobile systems
季节性移动系统的生态进化动力学
  • 批准号:
    NE/Y000684/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Research Grant
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
  • 批准号:
    2239410
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: Paleozoic echinoderms as model systems for the study of evolutionary modes
合作研究:古生​​代棘皮动物作为研究进化模式的模型系统
  • 批准号:
    2312211
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Paleozoic echinoderms as model systems for the study of evolutionary modes
合作研究:古生​​代棘皮动物作为研究进化模式的模型系统
  • 批准号:
    2312212
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Ancestral Functions of PRXamide Neuropeitdes and Evolutionary Origin of Endocrine Systems: Insights from Functional Analysis in a Model Sea Anemone
PRX酰胺神经肽的祖先功能和内分泌系统的进化起源:模型海葵功能分析的见解
  • 批准号:
    23K14244
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Evolutionary Systems Biology of Host-Parasite Interactions
宿主-寄生虫相互作用的进化系统生物学
  • 批准号:
    10716048
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Evolutionary mechanisms leading to a transition of the sex determination systems.
导致性别决定系统转变的进化机制。
  • 批准号:
    23H02524
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EDGE CMT: Evolutionary developmental systems genetics of obligate sterility in ants
EDGE CMT:蚂蚁专性不育的进化发育系统遗传学
  • 批准号:
    2422694
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: Paleozoic echinoderms as model systems for the study of evolutionary modes
合作研究:古生​​代棘皮动物作为研究进化模式的模型系统
  • 批准号:
    2312213
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Investigating the battle between CRISPR-Cas systems and anti-CRISPRs using biochemical, genetic, and evolutionary approaches
使用生化、遗传和进化方法研究 CRISPR-Cas 系统和抗 CRISPR 之间的斗争
  • 批准号:
    480052
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了