Uncovering biophysical and functional mechanisms of information processing in neural systems

揭示神经系统信息处理的生物物理和功能机制

基本信息

  • 批准号:
    RGPIN-2020-05868
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The prodigious capacity of our brain to process information relies on efficient information-processing mechanisms. Understanding these mechanisms enables the development of bio-inspired intelligent systems and facilitates the development of implantable devices that can help people with neurological disorders to experience a healthy life again. Inferring these mechanisms from recorded brain signals is extremely challenging because the neural systems' activities are complex, nonlinear, and multi-scale. Furthermore, the recorded brain signals are noisy, sparse, and incomplete. We refer to these obstacles toward understanding the mechanisms of neuronal information processing as the lack of observability in neural systems. Relying solely on experimental recordings of the brain is not sufficient to overcome these obstacles - mathematical models and engineering methods are required. My research program is devoted to creating mathematical models and developing engineering algorithms that can link the models with experimental recordings. In this way, we aim to conquer this lack of observability in neural systems, understand neuronal information processing, and enhance the controllability of the brain's functions. Nearly all efforts to uncover neuronal information processing have focused on understanding how neurons respond to external stimuli. However, it is well-known from experimental studies that the communication between neurons is NOT static. Neurons communicate with each other through synapses (the structure that permits a neuron to transmit information to another neuron). The strength of connectivity between neurons varies with the ever-changing rate of activities in the pre- and post-synaptic neurons. The dynamic interactions between neurons are referred to as synaptic plasticity. Inferring mechanisms of neuronal information processing becomes more challenging if an additional set of parameters reflecting synaptic plasticity is to be taken into account. However, neurostimulation devices - by delivering electrical pulses to sets of neurons and affecting synaptic plasticity - presents a way to examine the modulated neural activities in a controlled fashion. My general approach is to benefit from neurostimulation to stimulate a neural system, create computational models to predict the underlying neural activities, and use experimental recordings provided by my collaborators to observe those activities. Moreover, I will develop engineering algorithms to infer the model parameters by minimizing the error between the observed and the predicted neural activities. My long-term goal is to uncover the mechanisms of information processing in neural systems by examining how neurostimulation impacts synaptic plasticity and modulates neuronal responses. This research program will provide a framework to gain a mechanistic understanding of neural systems' information processing, which in turn will advance our ability to control the brain's functions.
我们大脑处理信息的巨大能力依赖于有效的信息处理机制。了解这些机制可以开发生物启发的智能系统,并促进可植入设备的开发,这些设备可以帮助患有神经系统疾病的人再次体验健康的生活。从记录的大脑信号中推断这些机制极具挑战性,因为神经系统的活动是复杂的,非线性的,多尺度的。此外,记录的大脑信号是嘈杂的,稀疏的,不完整的。我们把这些障碍理解为神经系统中缺乏可观察性的神经信息处理机制。仅仅依靠大脑的实验记录不足以克服这些障碍-需要数学模型和工程方法。我的研究计划致力于创建数学模型和开发工程算法,可以将模型与实验记录联系起来。通过这种方式,我们的目标是克服神经系统中缺乏可观察性,了解神经元信息处理,并增强大脑功能的可控性。几乎所有揭示神经元信息处理的努力都集中在理解神经元如何对外部刺激做出反应。然而,从实验研究中可以看出,神经元之间的通信不是静态的。神经元通过突触(允许一个神经元向另一个神经元传递信息的结构)相互通信。神经元之间的连接强度随着突触前和突触后神经元中不断变化的活动速率而变化。神经元之间的动态相互作用被称为突触可塑性。 如果要考虑反映突触可塑性的一组额外参数,则推断神经元信息处理机制变得更具挑战性。然而,神经刺激设备-通过向神经元组传递电脉冲并影响突触可塑性-提供了一种以受控方式检查调制的神经活动的方法。 我的一般方法是从神经刺激中受益来刺激神经系统,创建计算模型来预测潜在的神经活动,并使用我的合作者提供的实验记录来观察这些活动。此外,我将开发工程算法,通过最小化观察到的神经活动和预测之间的误差来推断模型参数。我的长期目标是通过研究神经刺激如何影响突触可塑性和调节神经元反应来揭示神经系统中信息处理的机制。这项研究计划将提供一个框架,以获得对神经系统信息处理的机械理解,这反过来将提高我们控制大脑功能的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lankarany, Milad其他文献

Differentially synchronized spiking enables multiplexed neural coding
Necessary Conditions for Reliable Propagation of Slowly Time-Varying Firing Rate
  • DOI:
    10.3389/fncom.2020.00064
  • 发表时间:
    2020-07-29
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Hasanzadeh, Navid;Rezaei, Mohammadreza;Lankarany, Milad
  • 通讯作者:
    Lankarany, Milad
Impact of Synaptic Strength on Propagation of Asynchronous Spikes in Biologically Realistic Feed-Forward Neural Network
A theoretical framework for the site-specific and frequency-dependent neuronal effects of deep brain stimulation
  • DOI:
    10.1016/j.brs.2021.04.022
  • 发表时间:
    2021-05-21
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Milosevic, Luka;Kalia, Suneil K.;Lankarany, Milad
  • 通讯作者:
    Lankarany, Milad
Texture recognition based on multi-sensory integration of proprioceptive and tactile signals.
  • DOI:
    10.1038/s41598-022-24640-5
  • 发表时间:
    2022-12-15
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Rostamian, Behnam;Koolani, MohammadReza;Abdollahzade, Pouya;Lankarany, Milad;Falotico, Egidio;Amiri, Mahmood;Thakor, Nitish V.
  • 通讯作者:
    Thakor, Nitish V.

Lankarany, Milad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lankarany, Milad', 18)}}的其他基金

Uncovering biophysical and functional mechanisms of information processing in neural systems
揭示神经系统信息处理的生物物理和功能机制
  • 批准号:
    RGPIN-2020-05868
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Uncovering biophysical and functional mechanisms of information processing in neural systems
揭示神经系统信息处理的生物物理和功能机制
  • 批准号:
    RGPIN-2020-05868
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Uncovering biophysical and functional mechanisms of information processing in neural systems
揭示神经系统信息处理的生物物理和功能机制
  • 批准号:
    DGECR-2020-00050
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
  • 批准号:
    10655891
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Basis and Function of Lateral Assembly of Cadherin Molecules in Adhesive Junctions of Humans and Model Organisms
人类和模型生物粘附连接中钙粘蛋白分子横向组装的基础和功能
  • 批准号:
    10715056
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Relaxivity Contrast Imaging as Biomarker of Muscle Degeneration in ALS
弛豫对比成像作为 ALS 肌肉退化的生物标志物
  • 批准号:
    10783525
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Soft wireless multimodal cardiac implantable devices for long-term investigating heart failure pathogenesis
用于长期研究心力衰竭发病机制的软无线多模式心脏植入装置
  • 批准号:
    10735395
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Mechanisms of structural plasticity, client interactions, and co-aggregation of the lens ⍺-crystallins
晶状体α-晶状体的结构可塑性、客户相互作用和共聚集机制
  • 批准号:
    10709482
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Defining single-channel paracellular (tight junction) conductances using nanotechnology
使用纳米技术定义单通道旁细胞(紧密连接)电导
  • 批准号:
    10593421
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Structural and functional characterization of glycosyltransferases in the Campylobacter concisus N-linked glycoconjugate biosynthetic pathway
弯曲杆菌 N 连接糖复合物生物合成途径中糖基转移酶的结构和功能表征
  • 批准号:
    10607139
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Mechanistic dissection of allosteric modulation and nonproteolytic chaperone activity of human insulin-degrading enzyme
人胰岛素降解酶变构调节和非蛋白水解伴侣活性的机制剖析
  • 批准号:
    10667987
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Developing a nucleic acid force field with direct chemical perception for computational modeling of nucleic acid therapeutics
开发具有直接化学感知的核酸力场,用于核酸治疗的计算建模
  • 批准号:
    10678562
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
The role of ZCWPW1 in meiosis
ZCWPW1 在减数分裂中的作用
  • 批准号:
    10680189
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了