Computational Sensitivity Analysis for Decision-Making under Data Uncertainty
数据不确定性下决策的计算敏感性分析
基本信息
- 批准号:RGPIN-2018-03960
- 负责人:
- 金额:$ 1.94万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantitative models for making complex decisions require various parameters to be specified before a decision is derived. Those parameters are often uncertain estimates from data. Since a derived decision is dependent on the parameters, it is an essential part of decision-making to analyze how the decision changes when the estimated parameters are perturbed. The proposed research aims to develop novel methods to analyze the sensitivity of decisions obtained through complex models. Even with the modern advancement of computing power, it is still a challenging task to analyze the sensitivity of high-dimensional models that contain a large number of parameters that can be simultaneously perturbed. The proposed research will develop computationally practical algorithms to perform sensitivity analysis for high-dimensional models. This research will achieve the goal for two types of decision-making problems separately, the one where a complex decision is made once and the other where a series of decisions need to be made over multiple stages, that is, sequential decision-making.This proposal also aims to study how the use of data from heterogeneous systems affects sequential decision-making. A series of decisions are made based on knowledge obtained from historical data about how the system evolves over time. Recently, sequential data from large populations have become more readily available and such data are likely to contain heterogeneous transition patterns. For example, in a large population with a certain disease, the disease status of some patients might progress faster than for other patients. If this is the case, then modeling each transition pattern separately and applying a treatment plan that is optimal for the specific transition pattern can result in better outcomes. This research will formally study the following general question: under what conditions is it beneficial to model heterogeneous patterns and to assign decisions tailored to each pattern?To people who use analytical methods to make complex decisions, the proposed research will provide computationally tractable methods to understand the sensitivity of decisions. The two long-term objectives of this proposal, analyzing the sensitivity of optimal decisions under parameter uncertainty and studying the benefit of modeling distinct transition trends, align with personalized decision-making, which is gaining a lot of attention particularly in health care applications. The proposed research will provide methods to analyze the sensitivity of treatment plans under data uncertainty and to find optimal care plans for heterogeneous patient types. Furthermore, this proposal focuses on issues arising in decision-making based on large-scale data sets, so the need for the proposed methods will keep rising as we face more complex decisions to be made based on larger data sets.
制定复杂决策的定量模型需要在导出决策之前指定各种参数。这些参数往往是根据数据做出的不确定估计。由于导出的决策依赖于参数,因此分析估计参数受到干扰时决策的变化是决策的重要组成部分。提出的研究旨在开发新的方法来分析通过复杂模型获得的决策的敏感性。即使随着现代计算能力的进步,分析包含大量可同时摄动的参数的高维模型的灵敏度仍然是一项具有挑战性的任务。提出的研究将开发计算实用的算法来执行高维模型的灵敏度分析。本研究将分别实现两类决策问题的目标,一类是一次性做出复杂决策,另一类是需要在多个阶段做出一系列决策,即顺序决策。该建议还旨在研究来自异构系统的数据的使用如何影响顺序决策。一系列决策是基于从历史数据中获得的关于系统如何随时间演变的知识做出的。最近,来自大量人口的序列数据变得更容易获得,这些数据可能包含异质过渡模式。例如,在患有某种疾病的大量人群中,一些患者的疾病状态可能比其他患者进展得更快。如果是这种情况,那么分别对每个过渡模式进行建模,并应用针对特定过渡模式的最佳治疗计划,可以产生更好的结果。本研究将正式研究以下一般性问题:在什么条件下对异质模式建模和为每个模式量身定制的分配决策是有益的?对于那些使用分析方法做出复杂决策的人来说,本研究将提供计算上易于处理的方法来理解决策的敏感性。该提案的两个长期目标是分析参数不确定性下最优决策的敏感性和研究建模不同过渡趋势的好处,这与个性化决策相一致,特别是在医疗保健应用中得到了很多关注。提出的研究将提供方法来分析在数据不确定性下治疗方案的敏感性,并为异质患者类型找到最佳的护理方案。此外,该建议侧重于基于大规模数据集的决策中出现的问题,因此,随着我们面临基于更大数据集的更复杂决策,对所提出方法的需求将不断增加。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LEE, ILBIN其他文献
LEE, ILBIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LEE, ILBIN', 18)}}的其他基金
Computational Sensitivity Analysis for Decision-Making under Data Uncertainty
数据不确定性下决策的计算敏感性分析
- 批准号:
RGPIN-2018-03960 - 财政年份:2021
- 资助金额:
$ 1.94万 - 项目类别:
Discovery Grants Program - Individual
Computational Sensitivity Analysis for Decision-Making under Data Uncertainty
数据不确定性下决策的计算敏感性分析
- 批准号:
RGPIN-2018-03960 - 财政年份:2020
- 资助金额:
$ 1.94万 - 项目类别:
Discovery Grants Program - Individual
Computational Sensitivity Analysis for Decision-Making under Data Uncertainty
数据不确定性下决策的计算敏感性分析
- 批准号:
RGPIN-2018-03960 - 财政年份:2018
- 资助金额:
$ 1.94万 - 项目类别:
Discovery Grants Program - Individual
Computational Sensitivity Analysis for Decision-Making under Data Uncertainty
数据不确定性下决策的计算敏感性分析
- 批准号:
DGECR-2018-00415 - 财政年份:2018
- 资助金额:
$ 1.94万 - 项目类别:
Discovery Launch Supplement
相似海外基金
The Twelfth (12th) Workshop on Meteorological Sensitivity Analysis and Data Assimilation; Lake George, New York; May 19-24, 2024
第十二届(十二届)气象敏感性分析与资料同化研讨会;
- 批准号:
2330336 - 财政年份:2024
- 资助金额:
$ 1.94万 - 项目类别:
Standard Grant
Uncertainty quantification and sensitivity analysis for resilient infrastructure systems
弹性基础设施系统的不确定性量化和敏感性分析
- 批准号:
ST/Y003713/1 - 财政年份:2023
- 资助金额:
$ 1.94万 - 项目类别:
Research Grant
Genetic analysis of the pathogenesis of atopic dermatitis focusing on the allergic sensitivity of NC mice.
以NC小鼠过敏敏感性为重点的特应性皮炎发病机制的遗传分析。
- 批准号:
23K05600 - 财政年份:2023
- 资助金额:
$ 1.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study of super-parallel data analysis method for CMB polarimetric observations to improve the sensitivity of inflation detection
CMB极化观测超并行数据分析方法提高暴胀检测灵敏度的研究
- 批准号:
23KJ1602 - 财政年份:2023
- 资助金额:
$ 1.94万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Matched Design with Sensitivity Analysis for Observational Survival Data in Cardiovascular Patient Management using EMR Data
使用 EMR 数据对心血管患者管理中的观察性生存数据进行匹配设计和敏感性分析
- 批准号:
10731172 - 财政年份:2023
- 资助金额:
$ 1.94万 - 项目类别:
High-sensitivity qShot MALDI analysis of hair lipids and its clinical application to the evaluation of long-term mental fatigue
毛发脂质高灵敏qShot MALDI分析及其在长期脑力疲劳评估中的临床应用
- 批准号:
23K06072 - 财政年份:2023
- 资助金额:
$ 1.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hierarchical Geometric Accelerated Optimization, Collision-based Constraint Satisfaction, and Sensitivity Analysis for VLSI Chip Design
VLSI 芯片设计的分层几何加速优化、基于碰撞的约束满足和灵敏度分析
- 批准号:
2307801 - 财政年份:2023
- 资助金额:
$ 1.94万 - 项目类别:
Standard Grant
Comprehensive analysis of alkenones and alkenoates by reversed phase HPLC-MS with unprecedented sensitivity and selectivity
通过反相 HPLC-MS 全面分析烯酮和烯酸酯,具有前所未有的灵敏度和选择性
- 批准号:
2234875 - 财政年份:2023
- 资助金额:
$ 1.94万 - 项目类别:
Standard Grant
High-sensitivity micro analysis of woody plant cell wall lignins by 13C labeling and non-thermal microdissection
通过 13C 标记和非热显微切割对木本植物细胞壁木质素进行高灵敏度微分析
- 批准号:
23H02275 - 财政年份:2023
- 资助金额:
$ 1.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Machine Learning based Geospatial Sensitivity Analysis Tool (ML-GeoSAT) for Gross Exposure to Climate-Related Risks
基于机器学习的地理空间敏感性分析工具 (ML-GeoSAT),用于应对气候相关风险的总体暴露
- 批准号:
10031472 - 财政年份:2022
- 资助金额:
$ 1.94万 - 项目类别:
Small Business Research Initiative