Next-generation computational enzyme design for the creation of efficient artificial biocatalysts

用于创建高效人工生物催化剂的下一代计算酶设计

基本信息

  • 批准号:
    RGPIN-2021-03484
  • 负责人:
  • 金额:
    $ 5.76万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Enzymes are the most efficient catalysts known. They can accelerate chemical reactions by more than a billion times, display unmatched selectivity, and are completely biodegradable. If we could create, from scratch, artificial enzymes that can catalyze any chemical reaction with high efficiency, it would open the door to highly valuable biotechnologies that are currently inaccessible using natural enzymes. These include biocatalytic syntheses of fine chemicals and pharmaceuticals, treatment of metabolic disorders, and bioremediation of contaminated water and soil. In this proposed research program, we will develop next-generation enzyme design methods and use them to create efficient artificial biocatalysts for the synthesis of valuable chemicals. These methods will be based on the multistate protein design algorithms that we developed in the previous funding cycle, which allow proteins to be modeled, not as a single structure as is traditionally done, but as structural ensembles that more realistically represent the range of conformations that these molecules can sample in solution. This is important because enzymes must "move" in order to catalyze chemical reactions with extreme precision and efficiency. To date, all published examples of computational enzyme design have focussed on the design of a single structural state, not taking into account the ability of enzymes to exchange between multiple states, and thereby yielded artificial enzymes with catalytic efficiencies several orders of magnitude worse than those of their natural counterparts. The development and experimental validation of our proposed multistate enzyme design algorithms will be undertaken in the following research themes. 1) We will develop methods to design complete enzymatic catalytic cycles, instead of considering only a single state as was done previously, and use them to create efficient biocatalysts for multistep reactions of industrial interest. 2) We will develop methods to predict mutations far from the active site that will have a favorable effect on catalysis, an essential requirement for the creation of highly active enzymes that nevertheless remains elusive. 3) We will develop multistate design methods to control enzyme conformational equilibria and eventually create large conformational changes required for more complex reactions. In the long term, we will combine these methods to create biocatalysts `on-demand' for valuable biotechnological applications. The proposed research program will provide world-class research training, in both computational and experimental techniques, to a diverse group of trainees, helping them acquire skills highly sought after by the pharmaceutical, biotech, and bioproducts industries. As enzymes can be applied to a wide range of commercially and societally relevant problems, our proposed research will yield new technologies required to tackle important challenges of 21st century Canada in industry, the environment and medicine.
酶是已知的最有效的催化剂。它们可以将化学反应加速十亿倍以上,显示出无与伦比的选择性,并且完全可生物降解。如果我们能够从头开始创造出可以高效催化任何化学反应的人工酶,这将为目前使用天然酶无法实现的高价值生物技术打开大门。这些包括精细化学品和药物的生物催化合成,代谢紊乱的治疗,以及受污染的水和土壤的生物修复。在这个拟议的研究计划中,我们将开发下一代酶设计方法,并使用它们来创建有效的人工生物催化剂,用于合成有价值的化学品。这些方法将基于我们在上一个资助周期中开发的多态蛋白质设计算法,该算法允许蛋白质被建模,而不是像传统上那样作为单一结构,而是作为更真实地代表这些分子可以在溶液中采样的构象范围的结构集合。这一点很重要,因为酶必须“移动”,以极其精确和高效地催化化学反应。迄今为止,所有已发表的计算酶设计的例子都集中在单一结构状态的设计上,没有考虑酶在多种状态之间交换的能力,从而产生了催化效率比天然酶差几个数量级的人工酶。我们提出的多态酶设计算法的开发和实验验证将在以下研究主题中进行。1)我们将开发设计完整的酶催化循环的方法,而不是像以前那样只考虑单一状态,并使用它们为工业兴趣的多步反应创造有效的生物催化剂。2)我们将开发方法来预测远离活性位点的突变,这些突变将对催化产生有利的影响,这是创造高活性酶的基本要求,但仍然难以捉摸。3)我们将开发多态设计方法来控制酶的构象平衡,并最终创造更复杂的反应所需的大的构象变化。从长远来看,我们将联合收割机这些方法,创造生物催化剂的“按需”有价值的生物技术应用。拟议的研究计划将提供世界一流的研究培训,在计算和实验技术,以不同的学员群体,帮助他们获得高度追捧的制药,生物技术和生物制品行业的技能。由于酶可以应用于广泛的商业和社会相关问题,我们提出的研究将产生新技术,以应对21世纪加拿大在工业,环境和医学方面的重要挑战。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chica, Roberto其他文献

Chica, Roberto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chica, Roberto', 18)}}的其他基金

Next-generation computational enzyme design for the creation of efficient artificial biocatalysts
用于创建高效人工生物催化剂的下一代计算酶设计
  • 批准号:
    RGPAS-2021-00017
  • 财政年份:
    2022
  • 资助金额:
    $ 5.76万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Advanced Protein Engineering Training, Internships, Courses, and Exhibition (APPRENTICE)
高级蛋白质工程培训、实习、课程和展览(学徒)
  • 批准号:
    511956-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 5.76万
  • 项目类别:
    Collaborative Research and Training Experience
Next-generation computational enzyme design for the creation of efficient artificial biocatalysts
用于创建高效人工生物催化剂的下一代计算酶设计
  • 批准号:
    RGPIN-2021-03484
  • 财政年份:
    2021
  • 资助金额:
    $ 5.76万
  • 项目类别:
    Discovery Grants Program - Individual
Next-generation computational enzyme design for the creation of efficient artificial biocatalysts
用于创建高效人工生物催化剂的下一代计算酶设计
  • 批准号:
    RGPAS-2021-00017
  • 财政年份:
    2021
  • 资助金额:
    $ 5.76万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Advanced Protein Engineering Training, Internships, Courses, and Exhibition (APPRENTICE)
高级蛋白质工程培训、实习、课程和展览(学徒)
  • 批准号:
    511956-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 5.76万
  • 项目类别:
    Collaborative Research and Training Experience
Rational Design of Complex Protein Functions by Modulation of Backbone Dynamics
通过主链动力学调节复杂蛋白质功能的合理设计
  • 批准号:
    RGPIN-2016-04831
  • 财政年份:
    2020
  • 资助金额:
    $ 5.76万
  • 项目类别:
    Discovery Grants Program - Individual
Rational Design of Complex Protein Functions by Modulation of Backbone Dynamics
通过主链动力学调节复杂蛋白质功能的合理设计
  • 批准号:
    RGPIN-2016-04831
  • 财政年份:
    2019
  • 资助金额:
    $ 5.76万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Protein Engineering Training, Internships, Courses, and Exhibition (APPRENTICE)
高级蛋白质工程培训、实习、课程和展览(学徒)
  • 批准号:
    511956-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 5.76万
  • 项目类别:
    Collaborative Research and Training Experience
Advanced Protein Engineering Training, Internships, Courses, and Exhibition (APPRENTICE)
高级蛋白质工程培训、实习、课程和展览(学徒)
  • 批准号:
    511956-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 5.76万
  • 项目类别:
    Collaborative Research and Training Experience
Rational Design of Complex Protein Functions by Modulation of Backbone Dynamics
通过主链动力学调节复杂蛋白质功能的合理设计
  • 批准号:
    RGPIN-2016-04831
  • 财政年份:
    2018
  • 资助金额:
    $ 5.76万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
  • 批准号:
    82371660
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:
二次谐波非线性光学显微成像用于前列腺癌的诊断及药物疗效初探
  • 批准号:
    30470495
  • 批准年份:
    2004
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 5.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329760
  • 财政年份:
    2024
  • 资助金额:
    $ 5.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329758
  • 财政年份:
    2024
  • 资助金额:
    $ 5.76万
  • 项目类别:
    Standard Grant
Data-driven design of Next Generation Cross-Coupling catalysts by Ligand Parameterisation: A Combined Experimental and Computational Approach.
通过配体参数化进行下一代交叉偶联催化剂的数据驱动设计:实验和计算相结合的方法。
  • 批准号:
    2896325
  • 财政年份:
    2023
  • 资助金额:
    $ 5.76万
  • 项目类别:
    Studentship
Next generation massively multiplexed combinatorial genetic screens
下一代大规模多重组合遗传筛选
  • 批准号:
    10587354
  • 财政年份:
    2023
  • 资助金额:
    $ 5.76万
  • 项目类别:
Data models for large aircraft aerodynamics using next-generation computational fluid dynamics
使用下一代计算流体动力学的大型飞机空气动力学数据模型
  • 批准号:
    2889801
  • 财政年份:
    2023
  • 资助金额:
    $ 5.76万
  • 项目类别:
    Studentship
Training in Theory and Computation for Next Generation Neuroscientists
下一代神经科学家的理论和计算培训
  • 批准号:
    10746671
  • 财政年份:
    2023
  • 资助金额:
    $ 5.76万
  • 项目类别:
Alternative protein sources: growing the next generation computational modelling framework
替代蛋白质来源:发展下一代计算模型框架
  • 批准号:
    2886049
  • 财政年份:
    2023
  • 资助金额:
    $ 5.76万
  • 项目类别:
    Studentship
SBIR Phase II: An omics-based computational drug design and discovery platform for next generation microbiome therapeutics
SBIR II 期:基于组学的计算药物设计和发现平台,用于下一代微生物组疗法
  • 批准号:
    2228069
  • 财政年份:
    2023
  • 资助金额:
    $ 5.76万
  • 项目类别:
    Cooperative Agreement
Training in Theory and Computation for Next Generation Neuroscientists
下一代神经科学家的理论和计算培训
  • 批准号:
    10879209
  • 财政年份:
    2023
  • 资助金额:
    $ 5.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了