Interfacing semiconductor nanocrystals and coordination compounds for the multimodal detection of biological targets
连接半导体纳米晶体和配位化合物,用于生物靶标的多模式检测
基本信息
- 批准号:571498-2021
- 负责人:
- 金额:$ 3.28万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Semiconductor nanocrystals are well-explored materials that have risen to prominence in applications ranging from optoelectronics, energy conversion, and catalysis. Concomitantly, inorganic coordination compounds have been extensively exploited as both therapeutic and diagnostic agents in biomedicine. In coordination chemistry, variation of the coordination sphere around a metal center with judiciously selected ligands can lead to the formation of adducts that are capable of binding and/or interacting with biologically relevant molecules. A marriage of molecular coordination compounds with semiconductor nanocrystals leads to the formation of hybrid materials where the intrinsic properties of the nanocrystals can be influenced by the presence of the coordination compounds, and further still through the binding and/or interaction of the latter with a biological target. Semiconductor metal halide perovskite nanocrystals (with the stoichiometry ABX3) have been the source of a tremendous number of investigations recently, owing in part to their high photoluminescence quantum yields and narrow-band emission coupled with low cost and relatively facile syntheses. Most recently, critical modifications of the surface capping ligands of these nanocrystals has led to rapid and significant advances regarding the properties of these materials. This team research aims to leverage the modularity of the surface groups on perovskite nanocrystals to form an interface with custom-built biologically active coordination compounds. The resulting hybrid materials will be used as multimodal sensors for challenging biological targets. The primary modality involves photoelectrochemical response where the input (visible light excitation) and output (electrochemical response) signals are decoupled giving rise to a significant limit of detection. Conventional photoluminescence will be explored as a complementary modality, where mechanisms such as energy transfer between the surface coordination compound (with or without target binding) will offer an alternative pathway of detection. The lessons learned through this work are expected to advance the fundamental understanding of energy migration processes at the interface of semiconductor nanocrystals informing the future design of these systems as biosensors, but also as platform materials for energy conversion and catalysis.
半导体纳米晶体是一种被广泛研究的材料,在光电子学、能量转换和催化等领域的应用中已经崭露头角。与此同时,无机配位化合物在生物医学中被广泛用作治疗剂和诊断剂。在配位化学中,金属中心周围的配位球与明智选择的配体的变化可以导致能够与生物相关分子结合和/或相互作用的加合物的形成。分子配位化合物与半导体纳米晶体的结合导致杂化材料的形成,其中纳米晶体的固有性质可以受到配位化合物的存在的影响,并且还通过配位化合物与生物靶标的结合和/或相互作用而受到影响。半导体金属卤化物钙钛矿纳米晶体(具有化学计量ABX 3)最近已经成为大量研究的来源,部分原因是它们的高光致发光量子产率和窄带发射,以及低成本和相对容易的合成。最近,这些纳米晶体的表面封端配体的关键改性导致了这些材料的性质的快速和显着的进步。该团队的研究旨在利用钙钛矿纳米晶体表面基团的模块化,与定制的生物活性配位化合物形成界面。由此产生的混合材料将被用作具有挑战性的生物目标的多模态传感器。主要模态涉及光电化学响应,其中输入(可见光激发)和输出(电化学响应)信号被解耦,从而产生显著的检测极限。传统的光致发光将被探索作为一种互补的方式,其中机制,如表面配位化合物(有或没有目标结合)之间的能量转移将提供一个替代的检测途径。通过这项工作所吸取的经验教训,预计将推进在半导体纳米晶体的界面能量迁移过程的基本理解,通知这些系统作为生物传感器的未来设计,但也作为能量转换和催化的平台材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Majewski, MarekMBM其他文献
Majewski, MarekMBM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAS: Multinary Semiconductor Nanocrystals: Increasing Complexity through Solution-Phase Chemistry
CAS:多元半导体纳米晶体:通过溶液相化学提高复杂性
- 批准号:
2305062 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
Polariton and CISS Effects on Photoinduced Electron Transfer from Quantum Confined Semiconductor Nanocrystals
极化子和 CISS 对量子限域半导体纳米晶体光致电子转移的影响
- 批准号:
2305112 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
Semiconductor Nitride Nanocrystals for Quantum Technologies
用于量子技术的半导体氮化物纳米晶体
- 批准号:
580930-2022 - 财政年份:2022
- 资助金额:
$ 3.28万 - 项目类别:
Alliance Grants
Development into multidimensional optical informatics by realizing one-dimensional chiral integration and quantum resonance amplification of semiconductor nanocrystals
通过实现半导体纳米晶的一维手性积分和量子共振放大向多维光学信息学发展
- 批准号:
22KK0070 - 财政年份:2022
- 资助金额:
$ 3.28万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Synthesis and Properties of Plasmonic Semiconductor Nanocrystals
等离激元半导体纳米晶的合成与性能
- 批准号:
572975-2022 - 财政年份:2022
- 资助金额:
$ 3.28万 - 项目类别:
University Undergraduate Student Research Awards
Resonance Raman polarization and high-energy excitonic states in semiconductor nanocrystals
半导体纳米晶体中的共振拉曼偏振和高能激子态
- 批准号:
2203301 - 财政年份:2022
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
Metal Clusters, Metal Nanostructures, Semiconductor Nanocrystals, Single-Ion Magnets
金属簇、金属纳米结构、半导体纳米晶体、单离子磁体
- 批准号:
RGPIN-2021-03176 - 财政年份:2022
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Metal Clusters, Metal Nanostructures, Semiconductor Nanocrystals, Single-Ion Magnets
金属簇、金属纳米结构、半导体纳米晶体、单离子磁体
- 批准号:
RGPIN-2021-03176 - 财政年份:2021
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Interfacing semiconductor nanocrystals and coordination compounds for the multimodal detection of biological targets
连接半导体纳米晶体和配位化合物,用于生物靶标的多模式检测
- 批准号:
571498-2021 - 财政年份:2021
- 资助金额:
$ 3.28万 - 项目类别:
Alliance Grants
All-Optical Near-Infrared Imaging via Semiconductor Nanocrystals
通过半导体纳米晶体进行全光学近红外成像
- 批准号:
MR/T040513/1 - 财政年份:2021
- 资助金额:
$ 3.28万 - 项目类别:
Fellowship