In Situ Nanoscale Study of Electrocatalysts for Renewable Fuels

可再生燃料电催化剂的原位纳米研究

基本信息

  • 批准号:
    RGPIN-2021-03310
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The energy produced from renewable resources is playing an increasingly important role in today's power systems. Renewable chemical fuels (H2 from water splitting or fuels produced from CO2 reduction) can be used to store excess production of intermittent sources such as solar or wind for future use on the grid. The success of energy storage solutions depends on finding new materials and optimizing their properties and the reactions that occur at their surface. The structure and properties of electrode/electrolyte interfaces change depending on the environment and the applied potential. The overarching goal of my research program is to study these interfaces under realistic conditions, using in situ methods so as to gain information on the actual active structures at the interface and create new catalysts with improved performance. Methods such as scanning probe microscopy (SPM) and plasmonically enhanced Raman spectroscopy can achieve high sensitivity, surface specificity and nanoscale resolution. In high resolution experiments, an SPM tip will be used as an enhanced Raman hotspot to map the chemical structure at the nanoscale of the interface in situ with a resolution at 10nm or better, a technique known as tip enhanced Raman spectroscopy (TERS). The proposed research program combines several strategies to achieve my goal: 1. Nanosheet electrocatalysts for renewable fuels made of layered double hydroxides (LDH) and 2D transition metal nitrides/carbides materials ("MXenes") are prominent candidates for affordable electrocatalysts for the production of H2. The structure of these materials is known to change under catalytic conditions, while the activity is sensitive to the presence of dopants and the local structure (basal plane, steps, surface functionalization). My students and I will perform nanoscale in situ measurements to unravel local structure-activity relationships so as to guide the optimization of catalyst structure. 2. My team will investigate hybrid plasmonic electrocatalysts that possess a plasmonic resonance in the visible and can inject energetic charge carriers at the surface. This combination will increase the overall performance of the catalyst and give us a better control over the selectivity. Students will first study bimetallic plasmonic catalysts and will then combine optically active plasmonic structures with a catalytically active part: (a) molecular catalysts attached on the metal surface and (b) nanosheets of LDH and MXenes created in the context of my Discovery program. At the newly created plasmonic/catalytic interface, new catalytic sites will exist that will present a different activity and selectivity. The resulting expertise and instrumentation will be unique in Canada. My Discovery research program will be the foundation for future work on advanced materials such as metal organic frameworks (MOF), transition metal dichalcogenides and 2D carbon materials to solve renewable energy and sustainability problems.
由可再生资源产生的能量在当今的电力系统中发挥着越来越重要的作用。可再生化学燃料(水分解产生的H2或CO2还原产生的燃料)可用于储存间歇性能源(如太阳能或风能)的过剩产量,以供将来在电网上使用。储能解决方案的成功取决于寻找新材料并优化其性能及其表面发生的反应。电极/电解质界面的结构和性质根据环境和施加的电势而变化。我的研究计划的总体目标是在现实条件下研究这些界面,使用原位方法,以便获得界面处实际活性结构的信息,并创建具有改进性能的新催化剂。诸如扫描探针显微镜(SPM)和等离子体增强拉曼光谱的方法可以实现高灵敏度、表面特异性和纳米级分辨率。在高分辨率实验中,SPM针尖将被用作增强的拉曼热点,以10 nm或更好的分辨率原位绘制界面纳米级的化学结构,这种技术被称为针尖增强拉曼光谱(TERS)。建议的研究计划结合了几个策略来实现我的目标:1。由层状双氢氧化物(LDH)和2D过渡金属氮化物/碳化物材料(“MXene”)制成的用于可再生燃料的纳米片电催化剂是用于生产H2的可负担得起的电催化剂的突出候选者。已知这些材料的结构在催化条件下会发生变化,而活性对掺杂剂的存在和局部结构(基面、台阶、表面官能化)敏感。我和我的学生将进行纳米尺度的原位测量,以解开局部结构与活性的关系,从而指导催化剂结构的优化。2.我的团队将研究混合等离子体电催化剂,它在可见光下具有等离子体共振,可以在表面注入高能电荷载流子。这种组合将提高催化剂的整体性能,并使我们更好地控制选择性。学生们将首先研究激光等离子体激元催化剂,然后将联合收割机光学活性等离子体结构与催化活性部分相结合:(a)附着在金属表面上的分子催化剂和(B)在我的发现计划中创建的LDH和MXenes纳米片。在新产生的等离子体/催化界面处,将存在新的催化位点,其将呈现不同的活性和选择性。由此产生的专业知识和仪器将是加拿大独一无二的。我的发现研究计划将是未来研究金属有机框架(MOF),过渡金属二硫属化物和2D碳材料等先进材料的基础,以解决可再生能源和可持续性问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Goubert, Guillaume其他文献

Tip Recycling for Atomic Force Microscopy-Based Tip-Enhanced Raman Spectroscopy
  • DOI:
    10.1177/0003702820916234
  • 发表时间:
    2020-11-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Bartolomeo, Giovanni Luca;Goubert, Guillaume;Zenobi, Renato
  • 通讯作者:
    Zenobi, Renato
Observation of a photo wetting effect on anisotropic liquid-solid interfaces
  • DOI:
    10.1364/oe.17.009637
  • 发表时间:
    2009-06-08
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Goubert, Guillaume;Galstian, Tigran
  • 通讯作者:
    Galstian, Tigran
In Situ Electrochemical Tip-Enhanced Raman Spectroscopy with a Chemically Modified Tip
  • DOI:
    10.1021/acs.jpclett.8b01635
  • 发表时间:
    2018-07-19
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Goubert, Guillaume;Chen, Xu;Van Duyne, Richard P.
  • 通讯作者:
    Van Duyne, Richard P.
Direct Observation of Molecular Preorganization for Chirality Transfer on a Catalyst Surface
  • DOI:
    10.1126/science.1208710
  • 发表时间:
    2011-11-11
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Demers-Carpentier, Vincent;Goubert, Guillaume;McBreen, Peter H.
  • 通讯作者:
    McBreen, Peter H.
Isolating a Reaction Intermediate in the Hydrogenation of 2,2,2-Trifluoroacetophenone on Pt(111)
  • DOI:
    10.1021/acs.jpcc.5b00734
  • 发表时间:
    2015-04-02
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Goubert, Guillaume;Groves, Michael N.;Hammer, Bjork
  • 通讯作者:
    Hammer, Bjork

Goubert, Guillaume的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Goubert, Guillaume', 18)}}的其他基金

In Situ Nanoscale Study of Electrocatalysts for Renewable Fuels
可再生燃料电催化剂的原位纳米研究
  • 批准号:
    DGECR-2021-00251
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Launch Supplement
In Situ Nanoscale Study of Electrocatalysts for Renewable Fuels
可再生燃料电催化剂的原位纳米研究
  • 批准号:
    RGPIN-2021-03310
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Étudier la chimie une molécule à la fois et une étape à la fois par imagerie STM et spectroscopie TERS stationnaire et ultra rapide.
研究分子化学和磁带和图像 STM 和光谱仪 TERS 站和超快速。
  • 批准号:
    454605-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Postdoctoral Fellowships
Étudier la chimie une molécule à la fois et une étape à la fois par imagerie STM et spectroscopie TERS stationnaire et ultra rapide.
研究分子化学和磁带和图像 STM 和光谱仪 TERS 站和超快速。
  • 批准号:
    454605-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Postdoctoral Fellowships

相似海外基金

Development and Application of Novel X-Ray Diffraction and Scattering Methods for the study of Crystalline, Amorphous, and Nanoscale Materials
用于研究晶体、非晶和纳米材料的新型 X 射线衍射和散射方法的开发和应用
  • 批准号:
    RGPIN-2017-06453
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Combining Atomic Force Microscopy with Nanoscale Electrophysiology to Study Li Ion Effects
结合原子力显微镜与纳米级电生理学研究锂离子效应
  • 批准号:
    558060-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Postdoctoral Fellowships
In Situ Nanoscale Study of Electrocatalysts for Renewable Fuels
可再生燃料电催化剂的原位纳米研究
  • 批准号:
    DGECR-2021-00251
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Launch Supplement
Combining Atomic Force Microscopy with Nanoscale Electrophysiology to Study Li Ion Effects
结合原子力显微镜与纳米级电生理学研究锂离子效应
  • 批准号:
    558060-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Postdoctoral Fellowships
In Situ Nanoscale Study of Electrocatalysts for Renewable Fuels
可再生燃料电催化剂的原位纳米研究
  • 批准号:
    RGPIN-2021-03310
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Application of Novel X-Ray Diffraction and Scattering Methods for the study of Crystalline, Amorphous, and Nanoscale Materials
用于研究晶体、非晶和纳米材料的新型 X 射线衍射和散射方法的开发和应用
  • 批准号:
    RGPIN-2017-06453
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Experimental Study of Solid-Liquid Interface at the Nanoscale
纳米尺度固液界面实验研究
  • 批准号:
    20H02089
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development and Application of Novel X-Ray Diffraction and Scattering Methods for the study of Crystalline, Amorphous, and Nanoscale Materials
用于研究晶体、非晶和纳米材料的新型 X 射线衍射和散射方法的开发和应用
  • 批准号:
    RGPIN-2017-06453
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Image-directed nanoscale photo-crosslinking for the study of sub-nuclear structures
用于亚核结构研究的图像引导纳米级光交联
  • 批准号:
    9896606
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
Study on the interfacial phenomenon inside the nanoscale space.
纳米尺度空间内的界面现象研究。
  • 批准号:
    19K23490
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了