Development of machine learning tools for the characterization and sorting of low level waste

开发用于低放废物表征和分类的机器学习工具

基本信息

  • 批准号:
    571324-2021
  • 负责人:
  • 金额:
    $ 3.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The storage and disposal of Low Level Waste (LLW) from nuclear power operations is a daunting challenge due to the large LLW volumes. LLW are typically stored in designated storage facilities; however, continuing to build new storage facilities to meet the fast growing volumes of LLW is not sustainable or economic. As an alternative, the existing storage capacity can be optimized by LLW sorting and segregating. However, the characterization and sorting of LLW materials in commercial practices can only be done manually, in a very crude, low-technology, and labor-intensive way. There is no existing automatic LLW sorting tools for commercial applications. The goal of this research is to leverage the power of advanced machine learning and develop automatic tools for the characterization and sorting of LLW from Ontario's nuclear fleet operation. This research will be conducted in collaboration with Laurentis Energy Partners, which is an innovator and leader in the nuclear energy industry. The anticipated outcomes of this research are: 1) a comprehensive literature review on nuclear waste handling, characterization, sorting, and segregation technologies; 2) development of an interactive LLW database for tracking LLW and effectively managing LLW data; and 3) development of machine-learning-based LLW characterization and sorting tools for processing LLW images and predicting LLW content. This work will lead to the development of state-of-the-art machine learning tools for automatic LLW characterization and optimized nuclear waste sorting. It will provide a long-term solution to the growing issue of LLW volumes and help enhance the capacity of Canadian nuclear energy industry as a world leader.
由于低放废物(LLW)体积庞大,因此核电运营中低放废物(LLW)的储存和处置是一项艰巨的挑战。低放废物通常储存在指定的储存设施中;然而,继续建造新的储存设施来满足低放废物快速增长的数量是不可持续的,也是不经济的。作为替代方案,可以通过LLW分类和隔离来优化现有的存储容量。然而,在商业实践中,LLW材料的表征和分选只能以非常粗糙、低技术和劳动密集型的方式手动完成。没有用于商业应用的现有自动LLW分选工具。本研究的目标是利用先进的机器学习的力量,并开发自动工具的表征和排序的低放废物从安大略的核舰队的运作。这项研究将与核能行业的创新者和领导者Laurentis Energy Partners合作进行。该研究的预期成果是:1)对核废物处理、表征、分选和分离技术进行全面的文献综述; 2)开发一个交互式LLW数据库,用于跟踪LLW和有效管理LLW数据; 3)开发基于机器学习的LLW表征和分选工具,用于处理LLW图像和预测LLW含量。这项工作将导致开发最先进的机器学习工具,用于自动LLW表征和优化核废物分类。它将为日益严重的低放废物问题提供长期解决方案,并有助于提高加拿大核能工业作为世界领导者的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li, ZoeZ其他文献

Li, ZoeZ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
非标准随机调度模型的最优动态策略
  • 批准号:
    71071056
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
微生物发酵过程的自组织建模与优化控制
  • 批准号:
    60704036
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
  • 批准号:
    10748341
  • 财政年份:
    2024
  • 资助金额:
    $ 3.46万
  • 项目类别:
Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
  • 批准号:
    10089281
  • 财政年份:
    2024
  • 资助金额:
    $ 3.46万
  • 项目类别:
    Investment Accelerator
Development of Understanding and Preparation for Machine learning for Accelerated Carbonation Technology Pelletisation Process - Carbon8
加速碳酸化技术造粒过程的机器学习的理解和准备的发展 - Carbon8
  • 批准号:
    10091589
  • 财政年份:
    2024
  • 资助金额:
    $ 3.46万
  • 项目类别:
    Collaborative R&D
Utilising Quantum Machine Learning and quantum computing for genomic research and development
利用量子机器学习和量子计算进行基因组研究和开发
  • 批准号:
    10083188
  • 财政年份:
    2023
  • 资助金额:
    $ 3.46万
  • 项目类别:
    Small Business Research Initiative
Development of an RNA-based test for diagnosing and monitoring bone and soft tissue cancers
开发基于 RNA 的测试来诊断和监测骨癌和软组织癌
  • 批准号:
    480287
  • 财政年份:
    2023
  • 资助金额:
    $ 3.46万
  • 项目类别:
    Operating Grants
Development of a correlational algorithm between oral function examination and oral-related QoL using machine learning.
使用机器学习开发口腔功能检查和口腔相关生活质量之间的相关算法。
  • 批准号:
    23K09302
  • 财政年份:
    2023
  • 资助金额:
    $ 3.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
  • 批准号:
    23H01276
  • 财政年份:
    2023
  • 资助金额:
    $ 3.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development and integration of organic solar cell and organic transistor materials using graph-based machine learning
使用基于图形的机器学习开发和集成有机太阳能电池和有机晶体管材料
  • 批准号:
    23H02064
  • 财政年份:
    2023
  • 资助金额:
    $ 3.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
  • 批准号:
    2311632
  • 财政年份:
    2023
  • 资助金额:
    $ 3.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
  • 批准号:
    2301173
  • 财政年份:
    2023
  • 资助金额:
    $ 3.46万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了