Predicting geological and geomechanical rock properties using data analytics and multi-sensor core logging data
使用数据分析和多传感器岩心测井数据预测地质和地质力学岩石特性
基本信息
- 批准号:RGPIN-2020-06196
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A detailed modelling of geological and geotechnical rock mass properties is essential for a cost effective and safe mining operation. Despite improvements in almost every technological aspect of mine planning and design, lack of sufficient and consistently measured data for the development of a detailed geological and geotechnical model remains a challenge. A higher quality and quantity of geological and geotechnical data is required to model the spatial variation of rock mass properties and to lower uncertainties in mine planning and design. Core logging is a fundamental method in obtaining geological and geotechnical data. However, the manual core logging methods are subjective, time consuming and inconsistent, which can significantly reduce the reliability of the resulting geological and geotechnical models. To overcome these limitations, new rock measurement and analysis techniques that automate the collection and analysis of data are required. This research program aims to advance prediction of rock geological and geomechanical properties using data from a multi--sensor core logging system. This will be achieved through the collection of multi-variate rock physical, mechanical, mineralogical and structural properties from non--destructive tests, together with high resolution images of the core samples. The data will then be used to develop machine learning models to predict geological and geomechanical rock properties. Core samples from geotechnical boreholes will be logged using both the manual and the multi--sensor core logging system. The high- quality images of the core samples along with the multi--variate core logging data will be processed to develop a multi--modal dataset. The dataset will be used for predictive models of geological and geomechanical rock properties. Supervised machine learning techniques will be used to train predictive models using the multi--modal mixed data. The models will be employed to automatically: predict and classify lithological rock units and their mechanical properties; detect and characterize geometrical attributes of natural discontinuities using image analysis; predict shear behaviour of discontinuities using digital core logging data; classify geomechanical rock mass properties based on multi--parameter digital core logging data; and to investigate the influence of data quality and quantity on geotechnical models used for mine design. The predictive geomechanical models from the digital core logging system will be compared to the models developed based on manual core logging data. The results of the research are expected to improve rock characterization and classification; allow informed decision making in mine planning and optimization; reduce the time and cost associated with unpredicted ground conditions; and reduce the risk of mine excavation failure and its associated costs.
地质和岩土工程岩体特性的详细建模对于具有成本效益和安全的采矿作业至关重要。尽管采矿规划和设计的几乎每一个技术方面都有改进,但缺乏足够和一致的测量数据来建立详细的地质和岩土模型仍然是一个挑战。需要更高质量和数量的地质和岩土数据来模拟岩体性质的空间变化并降低矿山规划和设计中的不确定性。岩心录井是获取地质和岩土工程资料的基本方法。然而,人工岩心测井方法是主观的,耗时的和不一致的,这可以显着降低所产生的地质和岩土模型的可靠性。为了克服这些限制,需要新的岩石测量和分析技术,自动收集和分析数据。该研究计划旨在利用多传感器岩心测井系统的数据提前预测岩石地质和地质力学性质。这将通过收集非破坏性试验的多变量岩石物理、机械、矿物学和结构特性以及岩心样品的高分辨率图像来实现。然后,这些数据将用于开发机器学习模型,以预测地质和地质力学岩石特性。将使用手动和多传感器岩心测井系统记录岩土钻孔的岩心样本。岩心样品的高质量图像沿着多变量岩心测井数据将被处理以开发多模态数据集。该数据集将用于地质和地质力学岩石特性的预测模型。监督机器学习技术将用于使用多模态混合数据来训练预测模型。这些模型将自动用于:预测和分类岩性岩石单元及其力学性质;利用图像分析检测和表征天然不连续面的几何属性;利用数字岩心测井数据预测不连续面的剪切特性;根据多参数数字岩心测井数据分类地质力学岩体性质;研究数据质量和数量对矿山设计所用岩土模型的影响。将数字岩心测井系统的预测地质力学模型与基于手动岩心测井数据开发的模型进行比较。预计研究结果将改善岩石表征和分类;允许在矿山规划和优化中做出明智的决策;减少与不可预测的地面条件相关的时间和成本;并降低矿山挖掘失败的风险及其相关成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Esmaeili, Kamran其他文献
A deep learning approach for rock fragmentation analysis
- DOI:
10.1016/j.ijrmms.2021.104839 - 发表时间:
2021-06-25 - 期刊:
- 影响因子:7.2
- 作者:
Bamford, Thomas;Esmaeili, Kamran;Schoellig, Angela P. - 通讯作者:
Schoellig, Angela P.
Continuous Monitoring and Improvement of the Blasting Process in Open Pit Mines Using Unmanned Aerial Vehicle Techniques
- DOI:
10.3390/rs12172801 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:5
- 作者:
Bamford, Thomas;Medinac, Filip;Esmaeili, Kamran - 通讯作者:
Esmaeili, Kamran
Discontinuous Modeling of Roof Strata Caving in a Mechanized Longwall Mine in Tabas Coal Mine
- DOI:
10.1061/(asce)gm.1943-5622.0002337 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:3.7
- 作者:
Arasteh, Hossein;Esmaeili, Kamran;Farsangi, Mohammad Ali Ebrahimi - 通讯作者:
Farsangi, Mohammad Ali Ebrahimi
An analytical solution for analysis of toppling-slumping failure in rock slopes
- DOI:
10.1016/j.enggeo.2019.105396 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:7.4
- 作者:
Haghgouei, Hadi;Kargar, Ali Reza;Esmaeili, Kamran - 通讯作者:
Esmaeili, Kamran
Esmaeili, Kamran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Esmaeili, Kamran', 18)}}的其他基金
Automated Geological and Structural Mapping of Open Pit Mines using Unmanned Aerial Vehicle (UAV) Systems and Machine Learning
使用无人机 (UAV) 系统和机器学习自动绘制露天矿地质和结构测绘
- 批准号:
561041-2020 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Alliance Grants
Predicting geological and geomechanical rock properties using data analytics and multi-sensor core logging data
使用数据分析和多传感器岩心测井数据预测地质和地质力学岩石特性
- 批准号:
RGPIN-2020-06196 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Development of rapid and automated remote sensing methods for ground engagement equipment enabling selective mining
开发用于地面接触设备的快速自动化遥感方法,以实现选择性采矿
- 批准号:
561062-2020 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Alliance Grants
Predicting geological and geomechanical rock properties using data analytics and multi-sensor core logging data
使用数据分析和多传感器岩心测井数据预测地质和地质力学岩石特性
- 批准号:
RGPIN-2020-06196 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
A Spatial Numerical Approach for Heterogeneous Slope Stability Analysis in Open Pit Mines
露天矿非均质边坡稳定性分析的空间数值方法
- 批准号:
RGPIN-2014-03992 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
A Spatial Numerical Approach for Heterogeneous Slope Stability Analysis in Open Pit Mines
露天矿非均质边坡稳定性分析的空间数值方法
- 批准号:
RGPIN-2014-03992 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Development of unmanned aerial vehicle systems for real-time mining data acquisition and decision making
开发实时采矿数据采集和决策的无人机系统
- 批准号:
508741-2017 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Collaborative Research and Development Grants
Characterizing the effect of micro and macro heterogeneity of rock on its comminution behaviour
表征岩石微观和宏观非均质性对其破碎行为的影响
- 批准号:
500310-2016 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Collaborative Research and Development Grants
Improving blast-induced rock fragmentation in Milton Quarry
改善米尔顿采石场爆炸引起的岩石破碎
- 批准号:
514506-2017 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Engage Grants Program
A Spatial Numerical Approach for Heterogeneous Slope Stability Analysis in Open Pit Mines
露天矿非均质边坡稳定性分析的空间数值方法
- 批准号:
RGPIN-2014-03992 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Doctoral Dissertation Research: Spatial and Geological Mapping in Local Communities
博士论文研究:当地社区的空间和地质测绘
- 批准号:
2342887 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Open Access Block Award 2024 - British Geological Survey
2024 年开放获取区块奖 - 英国地质调查局
- 批准号:
EP/Z531406/1 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Research Grant
Understanding the physico-chemical evolution at the steel-cement interfaces in geological CO2 storage environments
了解地质二氧化碳储存环境中钢-水泥界面的物理化学演化
- 批准号:
2911029 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Studentship
NSF-NERC: Geological History Constraints on the Magnitude of Grounding Line Retreat in the Thwaites Glacier System
NSF-NERC:地质历史对思韦茨冰川系统接地线后退幅度的限制
- 批准号:
2317097 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Geological conditions and long-term process leading to a massive landslide adjacent to an active-fault termination
地质条件和长期过程导致活动断层终止处附近发生大规模山体滑坡
- 批准号:
23H00728 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Weather, climate & geological risks: derivative pricing & risk management
天气、气候
- 批准号:
DP230101458 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Projects
Enhancing research capacity at the Geological Survey of Estonia to accelerate the country's transition to green energy (EGT-TWINN)
增强爱沙尼亚地质调查局的研究能力,加速该国向绿色能源的转型 (EGT-TWINN)
- 批准号:
10039270 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
EU-Funded
Rock erosion during cold climates of the next 1 million years: risk assessment for siting a UK Geological Disposal Facility.
未来一百万年寒冷气候期间的岩石侵蚀:英国地质处置设施选址的风险评估。
- 批准号:
2889450 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Studentship
The Shackleton Range of East Antarctica: unravelling a complex geological history via an integrated geochronological, geochemical and geophysical appr
南极洲东部的沙克尔顿山脉:通过综合地质年代学、地球化学和地球物理方法揭示复杂的地质历史
- 批准号:
2881843 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Studentship
Marine Geological Samples Laboratory: Graduate School of Oceanography, University of Rhode Island (support of marine sample curation)
海洋地质样本实验室:罗德岛大学海洋学研究生院(支持海洋样本管理)
- 批准号:
2311259 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant