Mathematical Optimization: Theory and Algorithms

数学优化:理论与算法

基本信息

  • 批准号:
    RGPIN-2020-04324
  • 负责人:
  • 金额:
    $ 3.5万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

My research program aims to find tractable mathematical models for problems treated within computer science, and then focuses on the design, mathematical analysis and implementation of efficient and robust algorithms (solution methods) for such problems. These problems arise in many application areas such as information technology (including quantum information and computing), manufacturing, transportation, planning, economics, finance, as well as service sectors. The research program focuses on modelling these problems and their mathematical generalizations as accurately as possible (and reasonable) by mathematical optimization problems. These mathematical optimization problems will typically lie in a special subclass (i.e., with additional special structures) of: (a) 0,1 mixed integer programming, or (b) semidefinite optimization problems where we seek low-rank solutions, or (c) semidefinite optimization problems where there are discrete variables, or (d) semidefinite optimization problems where we seek highest rank solutions,or (e) optimization problems defined by (possibly nonconvex) polynomial equations and inequalities. Since convex optimization problems form a very wide class of tractable mathematical optimization problems (under reasonable assumptions, such problems, when well-posed, can be solved to arbitrary accuracy in polynomial-time), the next step is the construction of a tractable convex approximation to the original, hard mathematical optimization problem. From a theoretical viewpoint, this approach provides a framework to design primal-dual algorithms. This framework then leads to, together with approximately optimal solutions, certificates of optimality. For hard problems, we can only hope for certificates of approximate optimality, hence for those, we focus on efficient approximation algorithms. This research program will advance the design, study and implementation of composite first--order and higher--order algorithms which focus on the big-data regime and adapt to the given data instance. These algorithms will combine the desired features of first--order algorithms: 1. low memory requirements, 2. low complexity per iteration, 3. distributability, 4. parallelizability; with those of second--order and higher--order algorithms: 5. much faster global convergence, 6. much, much faster local convergence, 7. high accuracy solutions, 8. robustness. Whenever feasible, the source codes of the resulting implementations as well as the data used for computational test and benchmarking will be made available on the web.
我的研究计划旨在为计算机科学中处理的问题找到易于处理的数学模型,然后专注于设计,数学分析和实现高效和鲁棒的算法(解决方法)。这些问题出现在许多应用领域,如信息技术(包括量子信息和计算),制造业,运输,规划,经济,金融以及服务部门。该研究计划的重点是通过数学优化问题尽可能准确(和合理)地对这些问题及其数学概括进行建模。这些数学优化问题通常将位于特殊子类(即,具有附加的特殊结构)的:(a)0,1混合整数规划,或(B)寻找低秩解的半定优化问题,或(c)存在离散变量的半定优化问题,或(d)寻找最高秩解的半定优化问题,或(e)由(可能非凸的)多项式方程和不等式定义的优化问题。由于凸优化问题形成了一类非常广泛的易处理的数学优化问题(在合理的假设下,当适定性时,这些问题可以在多项式时间内求解到任意精度),下一步是构造一个易处理的凸逼近原始的困难数学优化问题。从理论的角度来看,这种方法提供了一个框架来设计原始对偶算法。这个框架,然后导致,连同近似最优的解决方案,证书的最优性。对于困难的问题,我们只能希望得到近似最优性的证明,因此对于这些问题,我们专注于有效的近似算法。本研究计划将推进面向大数据体系、适应给定数据实例的复合一阶和高阶算法的设计、研究和实现。这些算法将联合收割机的一阶算法所需的功能:1。低内存需求,2.每次迭代的低复杂度,3.可分配性,4.并行性;与二阶和高阶算法的并行性:5.全球收敛速度更快,6.更快的局部收敛,7。高精度解决方案,8。鲁棒性只要可行,所产生的实现的源代码以及用于计算测试和基准测试的数据将在网上提供。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tuncel, Levent其他文献

Clarke Generalized Jacobian of the Projection onto Symmetric Cones
对称锥体投影的克拉克广义雅可比行列式
  • DOI:
    10.1007/s11228-009-0113-4
  • 发表时间:
    2009-05
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Kong, Lingchen;Tuncel, Levent;Xiu, Naihua
  • 通讯作者:
    Xiu, Naihua

Tuncel, Levent的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tuncel, Levent', 18)}}的其他基金

Mathematical Optimization: Theory and Algorithms
数学优化:理论与算法
  • 批准号:
    RGPIN-2020-04324
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Optimization: Theory and Algorithms
数学优化:理论与算法
  • 批准号:
    RGPIN-2020-04324
  • 财政年份:
    2020
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Design, analysis and implementation of algorithms utilizing convex optimization
利用凸优化的算法的设计、分析和实现
  • 批准号:
    RGPIN-2015-05546
  • 财政年份:
    2019
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Design, analysis and implementation of algorithms utilizing convex optimization
利用凸优化的算法的设计、分析和实现
  • 批准号:
    RGPIN-2015-05546
  • 财政年份:
    2018
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Design, analysis and implementation of algorithms utilizing convex optimization
利用凸优化的算法的设计、分析和实现
  • 批准号:
    RGPIN-2015-05546
  • 财政年份:
    2017
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Design, analysis and implementation of algorithms utilizing convex optimization
利用凸优化的算法的设计、分析和实现
  • 批准号:
    RGPIN-2015-05546
  • 财政年份:
    2016
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Design, analysis and implementation of algorithms utilizing convex optimization
利用凸优化的算法的设计、分析和实现
  • 批准号:
    RGPIN-2015-05546
  • 财政年份:
    2015
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical optimization and operations research
数学优化和运筹学
  • 批准号:
    139141-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical optimization and operations research
数学优化和运筹学
  • 批准号:
    139141-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical optimization and operations research
数学优化和运筹学
  • 批准号:
    139141-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mathematical Optimization: Theory and Algorithms
数学优化:理论与算法
  • 批准号:
    RGPIN-2020-04324
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Optimization: Theory and Algorithms
数学优化:理论与算法
  • 批准号:
    RGPIN-2020-04324
  • 财政年份:
    2020
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Study on Algorithmic Graph Theory and Mathematical Optimization
算法图论与数学优化研究
  • 批准号:
    25887007
  • 财政年份:
    2013
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Ultra-large-scale electronic state calculations based on ab initio theory and mathematical optimization methods
基于从头理论和数学优化方法的超大规模电子态计算
  • 批准号:
    23540370
  • 财政年份:
    2011
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear dynamic optimization theory on stochastic model and its application to mathematical finance
随机模型的非线性动态优化理论及其在数理金融中的应用
  • 批准号:
    17540121
  • 财政年份:
    2005
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Approximation Theory for Variational Problems with Applications to Random Composites and Stochastic Optimization Problems
数学科学:变分问题的逼近理论及其在随机组合和随机优化问题中的应用
  • 批准号:
    8922396
  • 财政年份:
    1990
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Combinatorial Optimization and Graph Theory Problems in Geometry
数学科学:几何中的组合优化和图论问题
  • 批准号:
    8903304
  • 财政年份:
    1989
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Optimization Theory
数学科学:最优化理论
  • 批准号:
    8913089
  • 财政年份:
    1989
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Optimization Theory
数学科学:最优化理论
  • 批准号:
    8800589
  • 财政年份:
    1988
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Application of Optimization Theory tothe Management of Nonlinear Age Structured Biological Resources
数学科学:优化理论在非线性年龄结构生物资源管理中的应用
  • 批准号:
    8511717
  • 财政年份:
    1986
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了