Computational Complexity of Geometric and Combinatorial Problems
几何和组合问题的计算复杂性
基本信息
- 批准号:RGPIN-2016-04274
- 负责人:
- 金额:$ 7.36万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary objective of the proposed research is to further our understanding of the inherent computational complexity of a number of fundamental combinatorial and geometric problems. This will be achieved by providing qualitative and quantitative answers to the questions: (i) "In what ways and to what extent do certain features (attributes of specific problem instances, or of the computational framework in which they are being addressed) contribute to the intrinsic difficulty of solving problems in a particular family?" and its complement (ii) "In what ways and to what extent can we exploit certain naturally occurring features or constraints, or modify the computational framework, to provide more efficient solutions to practical instances of these problems?"Many of the problems that we propose to address involve objects in motion, and their effective solution requires a clear understanding of the interplay between continuous geometric constraints and the discrete combinatorial attributes of the objects and environment. Specific problems that we will address path-planning problems for simple robots, under various motion/environment constraints, provide concrete examples are distinguished by the fundamental role that they play in a wide variety of applications. As such they provide fertile ground for meaningful progress on the second of the questions above. However, the problems can, and should, also be viewed as representatives of broader families of similarly structured problems. In this sense they facilitate, from a more theoretical standpoint, progress on the first question. Ultimately, our success should be measured in terms of new techniques for the design and analysis of efficient algorithms and data structures, and for the identification of inherent complexity limitations that apply in the most general possible context.Our methodology involves (i) the careful selection of problems (bearing in mind our dual objectives of practical and theoretical impact), (ii) the identification and exploitation of the critical interplay between tasks of algorithm and data structure design, on one hand, and the formulation of lower bounds on complexity for realistic models of computation on the other, and (iii) a sensitivity for practical issues (including efficient, often adaptive, algorithms together with robust implementations) as well as theoretical considerations (including asymptotic optimality, hardness and completeness results, and other model-dependent concerns).To be effectively realized this research program requires consideration and utilization of alternative models of computation (including sequential, parallel, distributed and randomized models), attention to structural and resource trade-offs, and the exploitation/enhancement of other established techniques and results in both the design and analysis of algorithms and advanced data structures.
拟议研究的主要目标是加深我们对一些基本组合和几何问题固有的计算复杂性的理解。这将通过对以下问题提供定性和定量的答案来实现:(I)“某些特征(特定问题实例的属性或解决这些问题的计算框架的属性)以什么方式和在多大程度上有助于解决特定家庭中的问题的内在困难?”及其补充(Ii)“我们可以用什么方式和在多大程度上利用某些自然产生的特征或约束,或修改计算框架,以提供这些问题的实际实例的更有效的解决方案?”我们建议解决的许多问题涉及运动中的物体,其有效的解决方案需要清楚地理解连续的几何约束与物体和环境的离散组合属性之间的相互作用。我们将解决简单机器人在各种运动/环境约束下的路径规划问题的具体问题,提供了具体的例子,这些问题的区别在于它们在广泛的各种应用中所发挥的基本作用。因此,它们为在上述第二个问题上取得有意义的进展提供了肥沃的土壤。然而,这些问题可以,也应该被视为类似结构问题的更广泛家族的代表。在这个意义上,从更多的理论角度来看,它们有助于在第一个问题上取得进展。我们的方法论涉及(I)仔细选择问题(考虑到我们的实际和理论影响的双重目标),(Ii)一方面识别和利用算法和数据结构设计任务之间的关键相互作用,另一方面为现实的计算模型制定复杂性下限,以及(Iii)对实际问题的敏感性(包括高效的,通常是自适应的,为了有效地实现该研究计划,需要考虑和使用其他计算模型(包括顺序、并行、分布式和随机化模型),注意结构和资源的权衡,以及在算法和高级数据结构的设计和分析中开发/增强其他已建立的技术和结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kirkpatrick, David其他文献
Price Determinants of Performance-Tested Bulls over Time
- DOI:
10.1017/aae.2019.3 - 发表时间:
2019-05-01 - 期刊:
- 影响因子:1.9
- 作者:
Boyer, Christopher N.;Campbell, Kelsey;Kirkpatrick, David - 通讯作者:
Kirkpatrick, David
The Steiner centre of a set of points: Stability, eccentricity, and applications to mobile facility location
- DOI:
10.1142/s0218195906002075 - 发表时间:
2006-08-01 - 期刊:
- 影响因子:0
- 作者:
Durocher, Stephane;Kirkpatrick, David - 通讯作者:
Kirkpatrick, David
Kirkpatrick, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kirkpatrick, David', 18)}}的其他基金
Computational Complexity of Geometric and Combinatorial Problems
几何和组合问题的计算复杂性
- 批准号:
RGPIN-2016-04274 - 财政年份:2021
- 资助金额:
$ 7.36万 - 项目类别:
Discovery Grants Program - Individual
Computational Complexity of Geometric and Combinatorial Problems
几何和组合问题的计算复杂性
- 批准号:
RGPIN-2016-04274 - 财政年份:2019
- 资助金额:
$ 7.36万 - 项目类别:
Discovery Grants Program - Individual
Computational Complexity of Geometric and Combinatorial Problems
几何和组合问题的计算复杂性
- 批准号:
RGPIN-2016-04274 - 财政年份:2018
- 资助金额:
$ 7.36万 - 项目类别:
Discovery Grants Program - Individual
Computational Complexity of Geometric and Combinatorial Problems
几何和组合问题的计算复杂性
- 批准号:
RGPIN-2016-04274 - 财政年份:2017
- 资助金额:
$ 7.36万 - 项目类别:
Discovery Grants Program - Individual
Computational complexity of geometric and combinatorial problems
几何和组合问题的计算复杂性
- 批准号:
3583-2009 - 财政年份:2015
- 资助金额:
$ 7.36万 - 项目类别:
Discovery Grants Program - Individual
Computational complexity of geometric and combinatorial problems
几何和组合问题的计算复杂性
- 批准号:
3583-2009 - 财政年份:2012
- 资助金额:
$ 7.36万 - 项目类别:
Discovery Grants Program - Individual
Computational complexity of geometric and combinatorial problems
几何和组合问题的计算复杂性
- 批准号:
3583-2009 - 财政年份:2011
- 资助金额:
$ 7.36万 - 项目类别:
Discovery Grants Program - Individual
Computational complexity of geometric and combinatorial problems
几何和组合问题的计算复杂性
- 批准号:
3583-2009 - 财政年份:2010
- 资助金额:
$ 7.36万 - 项目类别:
Discovery Grants Program - Individual
Computational complexity of geometric and combinatorial problems
几何和组合问题的计算复杂性
- 批准号:
3583-2009 - 财政年份:2009
- 资助金额:
$ 7.36万 - 项目类别:
Discovery Grants Program - Individual
Computational complexity of geometric and combinatiorial problems
几何和组合问题的计算复杂性
- 批准号:
3583-2003 - 财政年份:2008
- 资助金额:
$ 7.36万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
L12型化学复杂金属间化合物的力学行为
及应力腐蚀机理研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
面向量子电路编译优化及正确性方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
复杂性创伤性颅内血肿不同手术方式对预后影响的真实世界研究
- 批准号:2025JJ80608
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
隐藏吸引子混沌映射的建模分析及其混沌复杂性增强研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
常微系统与线性算子混沌复杂性研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
税收政策复杂性与企业认知决策一—基于“双重限额
”税收政策的研究
- 批准号:72403032
- 批准年份:2024
- 资助金额:万元
- 项目类别:青年科学基金项目
基于图机器学习的通用人工智能研究与应用
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
人工智能指导下的液体治疗策略改善严重复杂性腹腔感染患者的预后研究
- 批准号:2024Y9449
- 批准年份:2024
- 资助金额:10.0 万元
- 项目类别:省市级项目
税收政策复杂性与企业认知决策——基于“双重限额”税收政策的研究
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:青年科学基金项目
城市空间复杂性分析、决策与调控:基于“地形-漫水”与多
模态学习的创新方法研究
- 批准号:72474082
- 批准年份:2024
- 资助金额:万元
- 项目类别:面上项目
相似海外基金
Computational Complexity of Geometric and Combinatorial Problems
几何和组合问题的计算复杂性
- 批准号:
RGPIN-2016-04274 - 财政年份:2021
- 资助金额:
$ 7.36万 - 项目类别:
Discovery Grants Program - Individual
FET: A research triangle of quantum mathematics, computational complexity, and geometric topology
FET:量子数学、计算复杂性和几何拓扑的研究三角
- 批准号:
2009029 - 财政年份:2020
- 资助金额:
$ 7.36万 - 项目类别:
Standard Grant
Computational Complexity of Geometric and Combinatorial Problems
几何和组合问题的计算复杂性
- 批准号:
RGPIN-2016-04274 - 财政年份:2019
- 资助金额:
$ 7.36万 - 项目类别:
Discovery Grants Program - Individual
Computational Complexity of Geometric and Combinatorial Problems
几何和组合问题的计算复杂性
- 批准号:
RGPIN-2016-04274 - 财政年份:2018
- 资助金额:
$ 7.36万 - 项目类别:
Discovery Grants Program - Individual
Computational Complexity of Geometric and Combinatorial Problems
几何和组合问题的计算复杂性
- 批准号:
RGPIN-2016-04274 - 财政年份:2017
- 资助金额:
$ 7.36万 - 项目类别:
Discovery Grants Program - Individual
Computational complexity of geometric and combinatorial problems
几何和组合问题的计算复杂性
- 批准号:
3583-2009 - 财政年份:2015
- 资助金额:
$ 7.36万 - 项目类别:
Discovery Grants Program - Individual
Computational Complexity and Geometric Arrangements
计算复杂性和几何排列
- 批准号:
1000202948-2005 - 财政年份:2012
- 资助金额:
$ 7.36万 - 项目类别:
Canada Research Chairs
Computational complexity of geometric and combinatorial problems
几何和组合问题的计算复杂性
- 批准号:
3583-2009 - 财政年份:2012
- 资助金额:
$ 7.36万 - 项目类别:
Discovery Grants Program - Individual
Computational Complexity and Geometric Arrangements
计算复杂性和几何排列
- 批准号:
1000202948-2005 - 财政年份:2011
- 资助金额:
$ 7.36万 - 项目类别:
Canada Research Chairs
Computational complexity of geometric and combinatorial problems
几何和组合问题的计算复杂性
- 批准号:
3583-2009 - 财政年份:2011
- 资助金额:
$ 7.36万 - 项目类别:
Discovery Grants Program - Individual