Computational Methods for Single Cell Biology
单细胞生物学的计算方法
基本信息
- 批准号:RGPIN-2022-04378
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The biological sciences are undergoing a revolution driven by high throughput technologies which allow for the measurement of single cells. A prominent example is the rapid adoption of single cell RNA profiling using sequencing based approaches to explore all facets of biology. More recently other single cell sequencing approaches have been developed, allowing for the measurement of the DNA and epigenetic features of cells. The majority of approaches to date have required that cells be put into a liquid suspension for sequencing. This requires that tissue be broken apart and spatial information such as which cells were neighbouring be discarded. This makes it difficult to study how cells interact with each other. The cutting edge of single cell biology is removing this limitation by combining high throughput measurements with imaging or spatial barcoding. Spatial single cell technologies have enormous potential for advancing our understanding of biological systems. However, the data generated by these technologies are creating analytical challenges that are not adequately addressed by existing computational tools. These challenges range from low level problems in signal processing such as performing automated image analysis to identify cells and their expression profiles, to higher level problems such as extracting interpretable estimates of biologically interesting quantities from the data. Off the shelf machine learning approaches do not adequately address many of these problems. The two most important characteristics of this domain that challenge existing tools are the lack of well annotated datasets to train supervised learning approaches and the desire by biologists to have interpretable computational methods. In addition, the ability to leverage domain knowledge to impose additional structure on problems can significantly improve performance. I will develop novel computational and statistical models to analyze multi-modal single cell datasets to provide an integrated view of biological systems. Our approach will allow us to deeply probe the features of individual cells, while also measuring the spatial context and environment they exist in. The methods I develop will drive new biological discoveries by allowing spatial single cell profiling of complex systems such as tumours.
生物科学正在经历一场由高通量技术推动的革命,这种技术允许测量单细胞。一个突出的例子是使用基于测序的方法来探索生物学的所有方面,迅速采用单细胞RNA图谱。最近,已经开发了其他单细胞测序方法,允许测量细胞的DNA和表观遗传学特征。到目前为止,大多数方法都要求将细胞放入液体悬浮液中进行测序。这需要将组织分解,并丢弃空间信息,如哪些细胞相邻。这使得研究细胞如何相互作用变得困难。单细胞生物学的前沿正在通过将高通量测量与成像或空间条形码相结合来消除这一限制。空间单细胞技术在促进我们对生物系统的理解方面具有巨大的潜力。然而,这些技术产生的数据正在产生现有计算工具无法充分解决的分析挑战。这些挑战从信号处理中的低级问题,如执行自动图像分析来识别细胞及其表达谱,到高级问题,如从数据中提取可解释的生物学兴趣量估计。现成的机器学习方法不能充分解决其中的许多问题。该领域挑战现有工具的两个最重要的特征是缺乏良好注释的数据集来训练监督学习方法,以及生物学家希望拥有可解释的计算方法。此外,利用领域知识将额外的结构强加给问题的能力可以显著提高性能。我将开发新的计算和统计模型来分析多模式单细胞数据集,以提供生物系统的综合视图。我们的方法将使我们能够深入探索单个细胞的特征,同时也测量它们所存在的空间背景和环境。我开发的方法将通过允许对复杂系统(如肿瘤)进行空间单细胞图谱分析,推动新的生物学发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roth, Andrew其他文献
Psychopharmacology in Cancer
- DOI:
10.1007/s11920-014-0529-x - 发表时间:
2015-01-01 - 期刊:
- 影响因子:6.7
- 作者:
Thekdi, Seema M.;Trinidad, Antolin;Roth, Andrew - 通讯作者:
Roth, Andrew
PyClone: statistical inference of clonal population structure in cancer
- DOI:
10.1038/nmeth.2883 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:48
- 作者:
Roth, Andrew;Khattra, Jaswinder;Shah, Sohrab P. - 通讯作者:
Shah, Sohrab P.
Effects of hallucinogenic agents mescaline and phencyclidine on zebrafish behavior and physiology.
- DOI:
10.1016/j.pnpbp.2012.01.003 - 发表时间:
2012-04-27 - 期刊:
- 影响因子:5.6
- 作者:
Kyzar, Evan J.;Collins, Christopher;Gaikwad, Siddharth;Green, Jeremy;Roth, Andrew;Monnig, Louie;El-Ounsi, Mohamed;Davis, Ari;Freeman, Andrew;Capezio, Nicholas;Stewart, Adam Michael;Kalueff, Allan V. - 通讯作者:
Kalueff, Allan V.
Chaperone requirements for de novo folding of Saccharomyces cerevisiae septins.
- DOI:
10.1091/mbc.e22-07-0262 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:3.3
- 作者:
Hassell, Daniel;Denney, Ashley;Singer, Emily;Benson, Aleyna;Roth, Andrew;Ceglowski, Julia;Steingesser, Marc;McMurray, Michael - 通讯作者:
McMurray, Michael
Modeling anxiety using adult zebrafish: a conceptual review.
- DOI:
10.1016/j.neuropharm.2011.07.037 - 发表时间:
2012-01 - 期刊:
- 影响因子:4.7
- 作者:
Stewart, Adam;Gaikwad, Siddharth;Kyzar, Evan;Green, Jeremy;Roth, Andrew;Kalueff, Allan V. - 通讯作者:
Kalueff, Allan V.
Roth, Andrew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roth, Andrew', 18)}}的其他基金
Computational Methods for Single Cell Biology
单细胞生物学的计算方法
- 批准号:
DGECR-2022-00397 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Launch Supplement
Evolution of N-glycosylation in six transmembrane domain ion channels
六个跨膜域离子通道中 N-糖基化的演变
- 批准号:
377464-2009 - 财政年份:2009
- 资助金额:
$ 2.11万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Molecular evolutionary studies of ion channels
离子通道的分子进化研究
- 批准号:
368224-2008 - 财政年份:2008
- 资助金额:
$ 2.11万 - 项目类别:
University Undergraduate Student Research Awards
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Scalable Computational Methods for Genealogical Inference: from species level to single cells
用于谱系推断的可扩展计算方法:从物种水平到单细胞
- 批准号:
10889303 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Computational Methods for Inferring Single-cell DNA Methylation and its Spatial Landscape
推断单细胞 DNA 甲基化及其空间景观的计算方法
- 批准号:
10679088 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Computational methods for studying single-cell 3D genome
研究单细胞 3D 基因组的计算方法
- 批准号:
10570830 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Computational methods for studying single-cell 3D genome
研究单细胞 3D 基因组的计算方法
- 批准号:
10392079 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Generation of single cell multi omics computational methods for biological insights and novel deconvolution techniques for bulk omics data
生成用于生物学见解的单细胞多组学计算方法和用于批量组学数据的新型反卷积技术
- 批准号:
BB/X511389/1 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Training Grant
Generation of single cell multi-omics computational methods for biological insights and novel deconvolution techniques for bulk omics data
生成用于生物学见解的单细胞多组学计算方法和用于批量组学数据的新型反卷积技术
- 批准号:
2764861 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Studentship
Computational Methods for Inferring Single-cell DNA Methylation and its Spatial Landscape
推断单细胞 DNA 甲基化及其空间景观的计算方法
- 批准号:
10665219 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Computational Methods for Single Cell Biology
单细胞生物学的计算方法
- 批准号:
DGECR-2022-00397 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Launch Supplement
Computational Methods for Inferring Single-cell DNA Methylation and its Spatial Landscape
推断单细胞 DNA 甲基化及其空间景观的计算方法
- 批准号:
10378488 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Computational Methods to Integrate and Interpret the Transcriptome from Single Cell and Tissue Level Data
整合和解释单细胞和组织水平数据转录组的计算方法
- 批准号:
10576385 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别: