Evolutionary Computing: Constraints, Surrogate Models, and Noisy Gradients

进化计算:约束、代理模型和噪声梯度

基本信息

  • 批准号:
    RGPIN-2020-04833
  • 负责人:
  • 金额:
    $ 2.99万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Black-box optimization is the task of solving optimization problems where querying the value of the objective function is the only way of learning about the problem. Black-box problems occur in many areas, as for example in cases where simulations need to be run or prototypes be built in order to assess the quality of a solution. The objective function cannot be specified analytically, no assumptions regarding continuity or smoothness can be made, and observations of function values may be noisy. Gradient approximations can sometimes be obtained through finite differencing, but may not justify the cost incurred in obtaining them. Evolutionary algorithms (EAs) are stochastic algorithms for black-box optimization. The objective of this program of research is to contribute to the development of EAs in three areas: constrained optimization, surrogate model assisted optimization, and evolutionary search based on noisy gradients. In all cases, designs will be informed by systematically studying algorithm behaviour on scalable unit test problems. A primary concern in the development will be the preservation of desirable invariance properties. The proposed work will benefit users of EAs in that it will result in more capable algorithms for black-box optimization. It will significantly expand the range of problems that EAs can beneficially be applied to. Evolutionary search strategies based on noisy gradients have potentially wide ranging applications in machine learning, where variants of stochastic gradient descent that are commonly used for training neural networks do not possess desirable invariance properties and often require the careful tuning of parameters in order to be successful. The work will also result in several HQP with superior problem solving skills and unique expertise in the development and application of modern stochastic black-box optimization techniques as well as in aspects of machine learning and the design and analysis of experiments.
黑箱优化是解决优化问题的任务,其中查询目标函数的值是学习问题的唯一途径。黑盒问题出现在许多领域,例如,在需要运行模拟或构建原型以评估解决方案质量的情况下。目标函数不能解析地指定,不能作出关于连续性或光滑性的假设,并且对函数值的观测可能会有噪声。梯度近似有时可以通过有限差分获得,但可能不能证明获得它们所产生的成本是合理的。进化算法是一种求解黑箱优化问题的随机算法。这项研究的目标是在三个领域为进化算法的发展做出贡献:约束优化、代理模型辅助优化和基于噪声梯度的进化搜索。在所有情况下,设计都将通过系统地研究可伸缩单元测试问题的算法行为来获得信息。开发中的一个主要问题将是保持所需的不变性。拟议的工作将使EAS的用户受益,因为它将导致更有能力的黑盒优化算法。它将大大扩大环境影响评估可以有益地应用于的问题的范围。基于噪声梯度的进化搜索策略在机器学习中具有潜在的广泛应用,其中通常用于训练神经网络的随机梯度下降的变体不具有理想的不变性,并且通常需要仔细调整参数才能成功。这项工作还将产生几个HQP,它们在现代随机黑箱优化技术的开发和应用以及在机器学习和实验设计和分析方面具有卓越的问题解决技能和独特的专业知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arnold, Dirk其他文献

Efficacy of Oxaliplatin Plus Capecitabine or Infusional Fluorouracil/Leucovorin in Patients With Metastatic Colorectal Cancer: A Pooled Analysis of Randomized Trials
  • DOI:
    10.1200/jco.2008.16.7759
  • 发表时间:
    2008-12-20
  • 期刊:
  • 影响因子:
    45.3
  • 作者:
    Arkenau, Hendrik-Tobias;Arnold, Dirk;Porschen, Rainer
  • 通讯作者:
    Porschen, Rainer
Clinical Application of Radioembolization in Hepatic Malignancies: Protocol for a Prospective Multicenter Observational Study
  • DOI:
    10.2196/16296
  • 发表时间:
    2020-04-01
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Helmberger, Thomas;Arnold, Dirk;Walk, Agnes
  • 通讯作者:
    Walk, Agnes
Laryngeal pacing in minipigs: in vivo test of a new minimal invasive transcricoidal electrode insertion method for functional electrical stimulation of the PCA
  • DOI:
    10.1007/s00405-012-2141-1
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Foerster, Gerhard;Arnold, Dirk;Mueller, Andreas H.
  • 通讯作者:
    Mueller, Andreas H.
Targeted treatments in colorectal cancer: state of the art and future perspectives
  • DOI:
    10.1136/gut.2009.196006
  • 发表时间:
    2010-06-01
  • 期刊:
  • 影响因子:
    24.5
  • 作者:
    Arnold, Dirk;Seufferlein, Thomas
  • 通讯作者:
    Seufferlein, Thomas

Arnold, Dirk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arnold, Dirk', 18)}}的其他基金

Evolutionary Computing: Constraints, Surrogate Models, and Noisy Gradients
进化计算:约束、代理模型和噪声梯度
  • 批准号:
    RGPIN-2020-04833
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Evolutionary Computing: Constraints, Surrogate Models, and Noisy Gradients
进化计算:约束、代理模型和噪声梯度
  • 批准号:
    RGPIN-2020-04833
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Constraint handling in evolutionary algorithms
进化算法中的约束处理
  • 批准号:
    298298-2012
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Constraint handling in evolutionary algorithms
进化算法中的约束处理
  • 批准号:
    298298-2012
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Constraint handling in evolutionary algorithms
进化算法中的约束处理
  • 批准号:
    298298-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Automatic detection of scallops in seafloor images
自动检测海底图像中的扇贝
  • 批准号:
    503628-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Engage Grants Program
Low cost equipment health monitoring of dental curing lights
牙科固化灯低成本设备健康监测
  • 批准号:
    492533-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Engage Grants Program
Constraint handling in evolutionary algorithms
进化算法中的约束处理
  • 批准号:
    298298-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Constraint handling in evolutionary algorithms
进化算法中的约束处理
  • 批准号:
    298298-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Constraint handling in evolutionary algorithms
进化算法中的约束处理
  • 批准号:
    298298-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

The efficacy of a computing-concepts video library for students and peer tutors in multidisciplinary contexts
计算概念视频库在多学科背景下对学生和同伴导师的功效
  • 批准号:
    2337253
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track I: Wireless Federated Fog Computing for Remote Industry 4.0 Applications
合作研究:IRES Track I:用于远程工业 4.0 应用的无线联合雾计算
  • 批准号:
    2417064
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
  • 批准号:
    2348238
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
EA: Upgrading the Geophysics Computing Facility at Arizona State University
EA:升级亚利桑那州立大学的地球物理计算设施
  • 批准号:
    2348594
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
REU Site: The DUB REU Program for Human-Centered Computing Research
REU 网站:DUB REU 以人为中心的计算研究计划
  • 批准号:
    2348926
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Blending Socioeconomic-Inclusive Design into Undergraduate Computing Curricula to Build a Larger Computing Workforce
HSI 实施和评估项目:将社会经济包容性设计融入本科计算机课程,以建立更大规模的计算机队伍
  • 批准号:
    2345334
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403559
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
CAREER: Understanding and Ensuring Secure-by-design Microarchitecture in Modern Era of Computing
职业:理解并确保现代计算时代的安全设计微架构
  • 批准号:
    2340777
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了