Static and Dynamic Hyperspectral Image Analysis and Synthesis
静态和动态高光谱图像分析与合成
基本信息
- 批准号:RGPIN-2019-04273
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My long term research goal is to explore opportunities to create novel algorithms using physically correct methods for computer vision (CV) and for modelling and animating physical phenomena. Physically correct methods refer to computer vision methods that are consistent with principles in optics and in geometry. My underwater imaging work motivates my proposed research into investigating the computer vision issues of refraction of more than 3 wavelengths. The refraction of light occurs when light traverses from one medium to another medium with a different refractive index. The value of refractive index depends on the wavelength of light and on the temperature of the medium. Cameras are designed based on the principle of refraction. Refraction also occurs naturally in transparent objects such as in glasses, and in water. Mirage is a naturally occurring phenomenon in which the temperature gradient of air causes the refraction of light, which is also known as thermal-optical or photothermal deflection. Interestingly, by clever manipulation of the thermal gradient, an object can be made invisible. The area of CV that uses multiple wavelengths or bands is called multispectral imaging, when the number of bands N is small (N> 100. To simplify discussion, the term MH imaging includes multispectral, hyperspectral and thermal imaging. In the next five years, I plan to focus my efforts on issues related to MH imaging in developing physically correct methods for CV, in particular, in dispersive media. My short term objectives include: 1) identifying issues and constraints for MH imaging in CV and in developing a physically correct framework for using multiple wavelengths, 2) using the framework to develop physically correct CV algorithms for land and for the underwater environment, 3) developing new algorithms in MH structured light techniques, and 4) extracting MH features for classification and for modeling and rendering of realistic objects. For objective 1, issues with MH images will be identified and existing constraints used in CV will be evaluated for application in MH imaging. Specifically, I expect that there will be issues related to the image formation process, e.g. refraction, or to the type of camera. For objective 2, I plan to select several important existing CV algorithms, in particular, those that were developed in my lab, and extend them to the MH environment. For objective 3, I plan to develop structured light systems that use more than 3 wavelengths. For objective 4, I plan to investigate MH features captured in a dispersive environment that are useful for classification and other computer vision algorithms, e.g. shape from shading.
我的长期研究目标是探索使用物理正确的方法创建新算法的机会,用于计算机视觉(CV)以及建模和动画物理现象。物理上正确的方法是指计算机视觉方法与光学和几何学原理一致。我的水下成像工作激发了我对超过3个波长折射的计算机视觉问题的研究。当光从一种介质穿越到另一种具有不同折射率的介质时,就会发生光的折射。折射率的值取决于光的波长和介质的温度。相机是根据折射原理设计的。折射也自然发生在透明物体中,如玻璃和水中。海市蜃楼是一种自然发生的现象,其中空气的温度梯度导致光的折射,这也被称为热光学或光热偏转。有趣的是,通过巧妙地操纵热梯度,物体可以变得不可见。使用多个波长或波段的CV的区域称为多光谱成像,当波段的数量N很小时(N> 100)。为了简化讨论,术语MH成像包括多光谱、高光谱和热成像。在接下来的五年里,我计划把我的努力集中在与MH成像相关的问题上,开发物理上正确的CV方法,特别是在色散介质中。我的短期目标包括:1)识别CV中MH成像的问题和约束,以及开发使用多波长的物理正确框架,2)使用该框架开发用于陆地和水下环境的物理正确CV算法,3)开发MH结构光技术中的新算法,以及4)提取MH特征用于分类以及用于真实感物体的建模和绘制。 对于目标1,将识别MH图像的问题,并评价CV中使用的现有约束条件在MH成像中的应用。具体来说,我预计会有与图像形成过程相关的问题,例如折射或相机类型。对于目标2,我计划选择几个重要的现有CV算法,特别是我实验室开发的那些,并将其扩展到MH环境。对于目标3,我计划开发使用3个以上波长的结构光系统。对于目标4,我计划研究在分散环境中捕获的MH特征,这些特征对分类和其他计算机视觉算法(例如阴影形状)有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang, Herbert其他文献
Yang, Herbert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang, Herbert', 18)}}的其他基金
Static and Dynamic Hyperspectral Image Analysis and Synthesis
静态和动态高光谱图像分析与合成
- 批准号:
RGPIN-2019-04273 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Static and Dynamic Hyperspectral Image Analysis and Synthesis
静态和动态高光谱图像分析与合成
- 批准号:
RGPIN-2019-04273 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Static and Dynamic Hyperspectral Image Analysis and Synthesis
静态和动态高光谱图像分析与合成
- 批准号:
RGPIN-2019-04273 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Static and Dynamic Image Analysis and Synthesis
静态和动态图像分析与合成
- 批准号:
RGPIN-2014-06210 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Static and Dynamic Image Analysis and Synthesis
静态和动态图像分析与合成
- 批准号:
RGPIN-2014-06210 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Static and Dynamic Image Analysis and Synthesis
静态和动态图像分析与合成
- 批准号:
RGPIN-2014-06210 - 财政年份:2016
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Static and Dynamic Image Analysis and Synthesis
静态和动态图像分析与合成
- 批准号:
RGPIN-2014-06210 - 财政年份:2015
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Static and Dynamic Image Analysis and Synthesis
静态和动态图像分析与合成
- 批准号:
RGPIN-2014-06210 - 财政年份:2014
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Static and dynamic image analysis and synthesis
静态和动态图像分析与合成
- 批准号:
370-2009 - 财政年份:2013
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Static and dynamic image analysis and synthesis
静态和动态图像分析与合成
- 批准号:
370-2009 - 财政年份:2012
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Dynamic Credit Rating with Feedback Effects
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
Molecular Control of Thermomechanics and Shape-Morphing of Dynamic Covalent Polymer Networks
热机械的分子控制和动态共价聚合物网络的形状变形
- 批准号:
2406256 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Conference: Scientific Assessment of the McMurdo Dry Valleys Ecosystem: Environmental Stewardship in a Time of Dynamic Change
会议:麦克默多干谷生态系统的科学评估:动态变化时期的环境管理
- 批准号:
2409327 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
MCA: Cellular Responses to Thermal Stress in Antarctic Fishes: Dynamic Re-structuring of the Proteome in Extreme Stenotherms
MCA:南极鱼类对热应激的细胞反应:极端钝温鱼蛋白质组的动态重组
- 批准号:
2322117 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
CAREER: Harnessing Dynamic Dipoles for Solid-State Ion Transport
职业:利用动态偶极子进行固态离子传输
- 批准号:
2339634 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant